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CHAPTER 1 

INTRODUCTION 

1.1. Parkinson’s Disease.  

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disorder 

that affects 2-3% of the population with onset age more than 65 years old (J. Z Igmond 

and E. B Urke 2018; Arora and Fletcher 2013). The neurological hallmarks of PD are the 

depletion of dopamine in the basal ganglia with an extensive loss of dopaminergic 

neurons in the midbrain of the substantia nigra pars compacta (SNpc) accompanied by 

accumulation of an intraneuronal presynaptic filamentous protein called Lewy bodies 

(LBs). LBs may be responsible for triggering the degeneration of the dopaminergic neuron 

(Figure 1) (Dauer and Przedborski 2003; Sulzer 2007). The loss of SNpc neurons found 

to be responsible for the main symptoms of PD. In the 1960 researchers discovered that 

the pathological features of PD appear when the patient losses 75% of neuromelanin, a 

dark colored pigment formed within the dopamine and noradrenaline neurons of the SNpc 

and the locus coeruleus in the human brain (Dauer and Przedborski 2003; Michel, Hirsch, 

and Hunot 2016).  

PD was first described by the general physician James Parkinson in London in 

1817 in his classic monograph “An Essay on the shaking palsy” (Dauer and Przedborski 

2003; Hurwitz 2014). Early in the 19th century Charcot gave credit to James for his 

discovery and named the disease ‘‘Maladie de Parkinson’ (Jankovic 2007). Charcot also 

diagnosed another type of PD (slowing in movement) and distinguished from muscle 

weakness which Parkinson discovered  earlier. In 1919 Parkinson’s patients were 

recognized with losing cells in the substantia nigra. After this discovery, in1957; Carlson 



www.manaraa.com

 

 

2 

and his colleagues in Sweden realized dopamine as a putative neurotransmitter. In 1960 

Ehringer and Hornykiewicz noticed that patient with PD has a low level of dopamine in 

the striatum (Hurwitz 2014) (Goetz 2011).  

There are several symptoms linked to the development of PD. These symptoms 

classified into motor and non-motor symptoms. There are four cardinal signs associated 

with the development and progression of PD. The first sign is rest tremor, involuntary 

movement, which considered as an early sign of the disorder and the most common 

warning for having PD. 30% of PD people do not have tremor as a first indicator and 

appear later (Goetz 2011). The second motor symptom of PD is akinesia without motion, 

bradykinesia or hypokinesia means slow motion and this happens at an initial stage of 

the disease (slowness and difficulty of movement). Rigidity is the third motor sign of PD,  

the muscle stiffness movement caused by increased muscle tone, and it may appear in 

any part of the body (Schapira 2009a). Rigidity may associate with pain, and at the later 

stage rigidity may affect the whole body and reduce the ability to move. The fourth 

common motor indicator of PD is the postural instability, the impaired balance and 

frequency of falls that may lead to secondary bone fracture (Poewe et al. 2017). Some 

patients do not show all the cardinal manifestations of PD; there may be only one or two 

symptoms. Other clinical features that are associated with PD include secondary motor 

symptoms such as hypomimia, dysphagia, micrographia, shuffling, dystonia, glabellar 

reflexes. The most common non-motor symptoms in PD include anxiety, depression, 

dementia and sleep disturbance (Jankovic 2007; Poewe et al. 2017). There are several 

medications to treat PD, the current therapy relieves only the symptoms (Tanzi 2005). 
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Studies showed that people with PD are more susceptible to depression (Jinling 

Liu 2013). Researchers also reported that depression is more prevalent in PD patients 

than in the general population (Cui et al. 2017). It is unclear if depression is an 

independent risk factor for PD or if it is a primary sign of the neurodegenerative disease 

(Cui et al. 2017). Researchers suggested that the onset of depression in the elderly 

people could be one of the risk factors in PD (Zhu, van Hilten, and Marinus 2016). 

Antidepressant medications also found to increase the chance of developing PD 

(Reference?). Although the pathogenesis of PD found to be multifactorial, the mechanism 

of the disease remains unknown (Moore et al. 2005). 

 

Figure 1. Schematic diagram showing the normal and the diseases nigrostriatal pathways 

(Sulzer 2007).   

The selective vulnerability of the nigral neurons in the PD neurodegenerative 

process could be explained by the sensitivity of these neurons to a specific stressful such 

as high physiological levels of excitation and intracellular Ca+ loads, genetic background, 

preexisting conditions (e.g., diabetes), aging and predisposing factors; such as chronic 
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consequences of lesions, injuries from previous infections, and chronic consequences of 

stress and environmental toxins (Figure 2) (McKee et al. 2009) (Saxena and Caroni 

2011). 

Several stressful factors such as individual biases, local environmental factors, 

stress susceptibility, and sensitivity to misfolding-prone proteins cause specific 

neurodegenerative disease (NDDs). Neuronal connectivity and excitability may have a 

significant role in determining the intrinsic sensitivity to stress causing dysfunction and 

decease to the neurons. The loss of the neurons could be due to the accumulation of 

toxic protein species that could spread to other exposed cells (Arora and Fletcher 2013).  

 

Figure 2: Schematic of How Gradually Increasing Stress in Affected and 
Selectively Vulnerable Neurons May Underlie the Etiology and Progression of NDDs 
(Saxena and Caroni 2011). 
 
1.2. Prevalence of PD. 

PD is the second most neurodegenerative disease in the worldwide after 

Alzheimer’s disease (AD). The lifetime risk of the disorder is 2% (Schapira 2009a). PD is 

an age-related disease, it affects around 2% of the population over the age of 60 and 5% 

of people over age 85 making aging the most significant risk factor for PD. The failure of 

cellular compromised mechanisms and the accumulation of age-related somatic cells due 
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to aging contribute to dopamine neuron demise in the PD rather than the disease onset 

(Hindle 2010; Collier, Kanaan, and Kordower 2011). Minor cases of PD are due to genetic 

mutation (Zhang et al. 2018). Over 1 million people in the united states alone are affected 

by this disabling disorder (Schapira ; Schapira 2009a). The prevalence of PD by 

geographical area was seen only in patients ages 70 to 79 years old (Pringsheim et al. 

2014). PD attacks 50% more men than women. The incidence of occurrence of PD in the 

world reported up to 190 per 100,000 people (Ratner and G. Feldman 2004). According 

to the American Parkinson's Disease Association, the incidence of PD ranges from 8.6-

19 per 100,000 people (Benjamin C.L. Lai 2001). Approximately 50,000 new cases are 

diagnosed in the U.S. annually. The prevalence of undiagnosed PD cases is expected to 

be about 3-4 million people or 1.10%. 

The socioeconomic factors can easily affect the prevalence of the disorders, both 

direct and indirect cost for the treatment of PD can influence the incidence, severity, and 

course of progression pose a significant burden on those who suffer from it (Céu Mateus 

2013). The national economic burden of PD exceeds $14.4 billion in 2010. The indirect 

cost of loss of productivity estimated to be $6.3 billion (MD 2013). The frequency of PD is 

a predicted to double or triple according to the current demographic trends as the size of 

elderly population grows. Most cases of PD are sporadic, the familial instances estimated 

around 1-2 % (Fernandez-Espejo 2004). The cost related to the treatment of PD in the 

United States for individual patient each year is staggering. The cost of Medication for a 

single patient average $2,500 a year and the cost of Curative surgery can be up to 

100,000 dollars per patient. Such projections give an incentive for the need of innovative 

treatment for PD. 
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1.3. Factors implicated in the pathogenesis of the disease: 

Although age is the most substantial risk factor involved in the development and 

progression of PD, numerous factors found to be implicated and contribute to its 

pathogenesis. These factors could include but not limited to oxidative, and nitrative stress, 

protein aggregation, genetics, inflammation, and environmental factors (J. Z Igmond and 

E. B Urke 2018). Protein aggregation, mitochondrial dysfunction, and oxidative stress are 

considered the most common pathological risk factors (Samluk, Chroscicki, and 

Chacinska 2018). The process of the interrelated events of these factors causes the 

degeneration of neurons (Jenner and Olanow 2006). It was not determined if PD is a 

single disorder with common pathogenic causes or it is a group of disease with different 

pathological mechanisms (Jenner and Olanow 2006).  PD is considered to be a sporadic 

disorder like other neurodegenerative diseases, but in rare cases, it can be  linked to 

familial genetic factors. These genetic mutations contribute to the pathogenesis of the 

dopaminergic neuron death (Przedborski 2005).  

Based on current data, it appears that the loss of dopaminergic neurons results 

from the convergence of several pathogenic factors (Przedborski 2005; Shoichet MS 

2008).  Although several studies have been done to understand the mechanism of 

neuronal death in PD, several critical questions remain unanswered (Heman-Ackah et al. 

2013; Warner and Schapira 2003). Oxidative stress happens due to some etiologic 

illnesses which increases the production of ROS with consequent compromization of the 

protective mechanism or the repair system (Rahal et al. 2014). Understanding of the 

pathogenesis of PD which distinguishes the factors that initiate the disease and the 
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factors lead to the progression and the development of the illness would be helpful to 

develop new treatment agents (Jenner and Olanow 2006). 

1.3.1. Mitochondrial dysfunction and oxidative stress. 

The intracellular membrane-enclosed organelles found in most eukaryotic cells is 

the Mitochondria, it plays many vital roles in these cells such as pyruvate oxidation, Krebs 

cycle, metabolism of proteins, lipids, hormones, and, many other functions. The most 

crucial role is the generation of energy such as the production of adenosine triphosphate 

(ATP) which is utilized by the mitochondrial electron-transport chain and the oxidative-

phosphorylation system (Perier and Vila 2011). This evidence explained the mitochondria 

as a place where oxidative phosphorylation takes place, and it is an essential source for 

reactive oxygen species (ROS) (Rezende Figueira et al. 2012).       

Recent studies showed that Mitochondria is involved either directly or indirectly in 

the pathogenesis of PD (Jaimes 2013; Rimessi et al. 2016). Mitochondrial programmed 

cell death found to be related to the diminishing of neurons in the SN, the protein involved 

in familial PD also found to be associated with mitochondria. The alteration of 

mitochondrial DNA with aging is also linked to PD (Jayaraj et al. 2013). Defects or 

abnormalities in mitochondria include elevated ROS and decreased ATP levels, 

especially in the complex I, can lead to neurodegeneration (Vila, Ramonet, and Perier 

2008; Jayaraj et al. 2013).  

As a regular function of mitochondria, the molecular oxygen is reduced to water at 

complex IV of the ETC during the process of oxidative metabolism. Other redox centers 

at a site of electron leak in complex I of the ETC may reduce non-enzymatically a small 

fraction of oxygen to superoxide (O2.) and H2O2 (Turrens 2003). Any deficiency in 
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complex-I can enhance the production of reactive oxygen species (ROS). Neurotoxin 

causing Parkinsonian syndrome found to inhibit mitochondrial respiration. Studies 

showed that several neurotoxic agents, such as rotenone, paraquat, and MPP + can have 

different mechanisms inside dopaminergic neurons in the mitochondria, and produce 

toxicity: by concentrating inside the mitochondria and causing toxicity, interacting with the 

cytosolic enzymes or uptaking via the vesicular monoamine transporters (VMAT) into the 

synaptic vesicles (Dauer and Przedborski 2003). MPP+ inhibits complex I, augments 

ROS production, and decreases the synthesis of ATP (Dauer and Przedborski 2003). 

Local ROS can also damage complex I (Wim Mandemakers 2007). The pathogenic role 

of mitochondria is still unclear (Haddad and Nakamura 2015). Glucolipotoxicity is 

considered the causative risk factor in mitochondrial dysfunction; the other aspects are 

the mutation of mitochondrial DNA, the exposure to an environmental toxin, the high-

calorie intake and the homeostasis unbalance (Jha et al. 2017). Moreover, researchers 

found a link correlated between the mitochondrial dysfunction and the oxidative stress in 

PD (Martins Branco et al. 2010; Hastings 2009). Mitochondrial dysfunction leads to the 

deficit in energy supply and generation of oxidative stress. Exposure of the mitochondria 

to DA oxidized products resulted in mitochondrial respiration dysfunction occurs due to 

the imbalance in the antioxidant mechanisms (Figure 3) (Müller et al. 2010; Shahul 

Hameed 2011).  

The two mechanisms generated in the mitochondria for PD states: (1) Primary 

mitochondrial dysfunction involved in the generation of endogenous or exogenous toxic 

metabolites in dopaminergic neurons. (2) The secondary mitochondrial dysfunction 

happens due to genetic mutation toxicity (Exner et al. 2012; Hastings 2009). Besides DA,  
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its metabolite products may enhance the degeneration of neurons in PD patients (Martins 

Branco et al. 2010). Although several factors have contributed to the development and 

pathogenesis of PD, oxidative stress has been found to have a significant implication for 

the production of free radical (Siegfried Kösel 1999; Shankar J. chinta 2008). Reactive 

nitrogen species such as NO and its metabolite peroxynitrite (PN) may also play a primary 

role in the etiology of PD. NO is known to inhibit complexes I and IV of the mitochondrial 

electron transport chain (Shankar J. chinta 2008). 

 

Figure 3. Schematic representation of MPP+ intracellular pathways (Müller et al. 2010. 

1.3.1.1. Enzymatic and auto-oxidative DA metabolism. 

Studies showed that presence of dopamine, decreased antioxidants (ex; low 

glutathione level), and increase of iron level are the primary causes of the dopaminergic 

neurons death due to the induction of ROS generation (Chinta and Andersen 2008). The 

selectivity of the demise of DA neurons at the SNpc may belong to oxidative stress (Blesa 

et al. 2015). Dopamine (DA) is a monoamine compound released by neurons and function 

as a neurotransmitter. DA undergoes auto-oxidation to form dopamine quinones, and free 

radicals (Figure 4). Dopamine is synthesized in the brain from tyrosine which undergoes 

hydroxylation by thyroxin hydroxylase to DOPA and then decarboxylation to Dopamine 

(Figure 4) (Meiser, Weindl, and Hiller 2013). Dopamine, therefore, is stored in synaptic 
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vesicles in the presynaptic region after uptake by the vesicular monoamine transporter 2 

(VMAT2) (Wimalasena 2011).  

 

Figure 4. Dopamine synthesis in neurons (Meiser, Weindl. 

The excess amount of DA which is not stored in the VMAT2 would undergo 

hydroxylation by MAO, this process called auto-oxidation(Wimalasena 2011; Chinta and 

Andersen 2008). Auto-oxidation of dopamine may be amplified in the first stages of the 

disorder (Zhou, Huang, and Przedborski 2008). Monoamine oxidase is an enzyme 

involved in the degradation of primary, secondary and tertiary amine such as 

catecholamines. Monoamine oxidase, specifically, MAO-B catalyzes the oxidative 

deamination of dopamine in the nerve terminal (substantia nigra and striatum) to form the 

oxidized dopamine (dopamine-quinone, dopamine-semiquinone and neuromelanin), and 

free radicals (hydrogen peroxide), H2O2 is the common product in this process (Jenner 

2003).  

In mitochondria, catecholamines including dopamine get metabolized 

enzymatically by MAO-B and MAO-A, flavin based protein, to produce hydrogen peroxide, 

superoxide, and hydroxyl radical (Jr. 2012). Moreover, oxidation of dopamine by MAO 

mainly by MAO-B produces 3,4-dihydroxyphenylacetaldehyde and anionic semiquinone 

flavin. Quinones and semiquinones are also as toxic as hydrogen peroxide to the cells as 

they can bind to DNA, lipids, and proteins in the cells (Figure 5). The anionic semiquinone 

Flavin interacts with oxygen to make superoxide which attacks DNA (Jr. 2012). 

Autoxidation in PD is a mechanism of cell loss leading to apoptosis (programmed cell 
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death) (Stanley and Gerald 1992; Jellinger 2000). Dopamine oxidation by MAO found to 

be the dominant risk factor involved in the progression of PD (Meiser, Weindl, and Hiller 

2013). Studies showed that the level of MAO-B enzyme increases with aging that would 

increase H2O2 production in the glial cells, H2O2 can cross into the nearby dopaminergic 

cells, and influence the dopaminergic neuron (Hussain et al. 2018).  It is understood that 

oxidative stress plays a specific role in the degeneration of dopaminergic neurons in PD 

(Dias, Junn, and Mouradian 2013). The autoxidation of dopamine and its regulation are 

essential factors in determining the loss of the dopaminergic neurons, which are 

characterized in humans by the presence of neuromelanin (Figure 6) (Olanow 1999). 

 

   

Figure 5. Enzymatic oxidation of DA by MAO-B, yielding toxic metabolites. 

  

   

  

Figure 6. Auto-oxidative metabolism of DA. 

Nitric oxide (NO) plays a vital role in cell functions through the signal transduction 

pathway (Zhang, Dawson, and Dawson 2006). It also involves in the pathogenesis of the 

neurodegenerative diseases. While the mechanism of implication of NO in PD is not fully 

understood, studies showed that NO might cause neuronal death, DNA damage, protein 

aggregation, and misfolding. In the substantia nigra of Parkinson’s patients, high level of 

nitric oxide  (NO) was measured (Aquilano et al. 2008). Nitric oxide (•NO) is produced 

either from the inducible form of nitric oxide synthase (iNOS) or from the neuronal form 
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(nNOS). NO then participates in the cascade of events which leads to the degeneration 

of dopamine-containing neurons (Figure 7) (Ahlawat et al. 2014).  

 

Figure 7. Proposed pathway to form quinones from free radical nitric oxide. 

 Homeostasis of iron is essential in the normal functioning of the nervous system. 

Human iron metabolism is the set of chemical reactions maintaining human homeostasis 

of iron at both systemic and cellular level to maintain the redox-signaling proteins 

functions in neuron cells and the neuronal survival (Willis and Sandyk 1992; Liu et al. 

2017). Iron-mediated Fenton reaction potentially reacts with dopamine and produces a 

toxic hydroxyl radical which ultimately increases the oxidative stress that can damage the 

cells, the loosely bound iron Fe3+ or iron bound to neuromelanin gives the reduced form 

Fe2+ (Jenner 2003). Since the substantia nigra is rich in iron, it makes the area susceptible 

to free radical production in the presence of melanin (Hwang 2013). Which explains the 

significant role of iron in oxidative stress in PD brain. When the iron content of the SN is 

higher in the PD brain, it enhances the conversion of H2O2 to hydroxyl radical via Fenton 

reaction. (Figure 8) (Pichler et al. 2013).  

 

Figure 8. Oxidative Stress: Increased Iron Content. 

1.3.1.2.  Compromised antioxidant defense pathways 

H2O2   +   Fe2+ OH-  +  OH.  +  Fe3+
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Oxidative stress has strongly been linked to the pathogenesis of PD due to the 

production of H2O2 and free radicals (Hwang 2013). Numerous neuroprotective strategies 

have been identified to attenuate ROS in the dopaminergic neurons, one of these 

strategies is the use of Fruits and antioxidants to reduce the damage caused by the free 

radicals. Vitamins C, E, and GSH are also essential antioxidants in the body that can be 

reutilized by antioxidant lipoic acid (Liu et al. 2017). Lipoic acid is another example of 

antioxidants in human cells, its mechanism of action to protect neurons against both 

oxidative stress and inducers that cause mitochondrial dysfunction (Ahmadinejad et al. 

2017). The antioxidants mechanism is achieved by increasing the GSH generation or 

diminishing the lipid peroxide level in the brain which results in elevating the production 

of ATP and improvement of the motor function as a result of  neuroprotection (Abramov 

2012). Other examples of antioxidants are; glutathione peroxidase, catalase, and 

superoxide dismutase. The functions of these systems are scavenging of ROS, 

preventing ROS formation and repairing damage caused by ROS (Borut Poljsak 2013). 

In case of PD, the level of H2O2 elevated due to the reduction of glutathione and catalase 

enzymes levels in the Substantia Nigra region of PD patients (Mythri et al. 2011). 

An appropriate amount of antioxidant is essential for the normal functioning of the 

cells. (Figure 9). Antioxidants scavenge the reactive oxygen species, prevents their 

formation as well as repairs the damage caused by them (Liu et al. 2017; Drummond et 

al. 2017). The antioxidant system is a complicated system consisting of antioxidant 

enzymes (superoxide dismutase, catalase, glutathione peroxidase), glutathione, 

glutathione reductase, glucose-6-phosphate dehydrogenase (Chinta and Andersen 

2008). Superoxide dismutase (SOD) catalyzes the conversion of two molecules of 
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superoxide to H2O2 and O2, then catalase and glutathione peroxidase Convert H2O2 to 

H2O (Stanley and Gerald 1992; Liu et al. 2017). The glutathione redox cycle should 

function well in cells to prevent the degeneration of neurons caused by reactive oxygen 

species (Schafer and Buettner 2001). 

  

Figure 9. Oxidative stress: reduced antioxidant level (Lu 1999). 

1.3.2. Protein aggregation. 

Several genetic and environmental factors have been implicated in protein 

misfolding and aggregation (Soto 2003). Abnormal protein aggregation is a crucial feature 

in aging and several neurodegenerative diseases in which cells lose their ability to handle 

the misfolded protein (Takalo et al. 2013). Abnormal formation and aggregation of 

intracytoplasmic rounded inclusion or extracellular aggregates named Lewy bodies (LBs) 

are considered one of the pathologic hallmarks of PD (Takalo et al. 2013). a-synuclein 

(ASN) is the primary component of Lewy bodies, and it is highly expressed in the 

mammalian brain. Although the exact physiological function of a-synuclein is still unclear, 

it is found to be involved in the pathophysiology of PD. a-synuclein, a protein consists of 

140 amino acids, belongs to the synuclein family of helically folded tetramer that resists 
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aggregation  (Figure 10) (Spinelli et al. 2014). The synuclein family includes a-synuclein, 

b-synuclein, and g-synuclein. Although all three members of the synuclein family are 

neuronal proteins, only a-synuclein is implicated in neurodegenerative diseases. (Figure 

10) (Spinelli et al. 2014; Chan et al. 2012; Xu and Chan 2015).  

  

Figure 10.  a-synuclein protein domain structure. α-synuclein protein is composed of 
three distinct regions: (1) an amino acid terminal, from 1-60 is the amphipathic region 
which has a positive charge and contains Apolipoprotein which gives a-helical structure 
on the membrane binding, (2) a central hydrophobic region called NAC (non-Ab 
component), residue of 61-95, responsible for oligomerization and fibrillization and gives 
a b-sheet structure, and (3) a carboxyl terminal, the rest of the protein 96- 140 is the acidic 
feature region, which has a negative charge, and this part is unstructured (Xu and Chan 
2015). 
 

In the normal state, alpha-synuclein is unfolded and exists as a monomer. Under 

the pathological condition, the protein undergoes misfolding, and also with aging, the cells 

lose the ability to handle misfolded protein. Mutant a-synuclein is more prone to 

aggregation and causes cell death in PD (Chan et al. 2012). Genetic abnormalities and 

environmental factors may accelerate the process (Irwin, Lee, and Trojanowski 2013). In 

normal condition, the cells have a specific system to reverse and prevent the misfolding 

of proteins; this system includes chaperones, ubiquitin proteasomes, and phagosome-

lysosome. In pathological conditions, the systems are overwhelmed by oligomeric species 

of α-syn (Irwin, Lee, and Trojanowski 2013). However, it is not known which pathogenic 

species of α-syn is toxic to neurons. Studies showed that the synthetic α-syn fibrils 
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precipitation in neurons alone could transmit PD between neurons to cause cell death (E. 

Burke et al. 1999).  

 

Figure 11. Misfolded alpha-synuclein proteins. ASN in pathological conditions is 
misfolded into abnormal beta-sheets (dimers, trimers, and oligomers) instead of alpha-
helices, that further aggregate and bend to form protofibrils, the protofibrils then further 
precipitate to form fibrils (amyloid fibrils), and eventually transformed into Lewy bodies. 
Deposition of α-synuclein protein in Lewy bodies is a hallmark for PD diagnosis. (Lee, 
V.M-Yet al, 2006) 
 
1.3.3. Genetic factors. 

Genetic mutations or variants are potential biomarkers in the diagnosis and 

identification of persons at the risk of PD (Jankovic 2007; Klein and Westenberger 2012). 

Although the cause of dopaminergic degeneration in idiopathic PD is unclear, most cases 

of PD are sporadic (Fernandez-Espejo 2004) in nature. Genetic factors are usually 

associated with familial PD (Zhang et al. 2018). Although several genes have been 

associated with PD, genetic influences are responsible for only rare cases (Massano and 

Bhatia 2012). The estimated incidence of familial PD is 1-2%. Genetic components play 

a dominant role in the pathophysiology of the disorder with early and late onset, and also 

involved in the nigrostriatal loss of the dopaminergic neurons (Massano and Bhatia 2012; 

Klein and Westenberger 2012). Family history with PD leads to increase in susceptibility 

to develop the syndrome (Ratner and G. Feldman 2004). Also variant genes such as 

SNCA over-expression and parkin gene mutation have been involved in the pathogenesis 



www.manaraa.com

 

 

17 

of PD; they accounted for a small fraction of the overall the frequency of the disease (Dick 

et al. 2007).  

1.3.4. Environmental factors. 

Environmental factors are other pathogenic aspects connected to the etiology of 

PD, such as pesticides, herbicides, and insecticides (Olanow 1999; Ratner and G. 

Feldman 2004). In the absence of identified genetic causes, environmental factors appear 

to have a role in the cause of the disease. In another word; people who develop PD due 

to exposure to the environmental influences are less likely to have a family history of the 

disorder (Hancock et al. 2008). According to the epidemiologic studies, exposure to 

environmental toxicants is related to increase the risk of PD. Example of environmental 

toxins are; pesticides, solvents, metals, and other pollutants (Goldman 2014). Nigral 

degeneration may occur by binding of oxidative stress and other metabolites to 

glutathione which happens through the exposure to the industrial toxic chemicals (Figure 

11) (Ratner and G. Feldman 2004). The amount of pesticide and the degree of exposure 

that may lead to the development of PD still unknown, and the identification of the agent 

that causes the disorder is challenging (Dick et al. 2007). In necropsy studies; the level 

of the organochlorine pesticide found to be high in patients with PD (Dick et al. 2007).   
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Figure 11. Factors contributed in the pathogenesis of PD.  

1.4. Therapeutic strategies in PD. 

Several significant advances have been made to understand the etiology, 

pathology and clinical phenomenology of PD that have underlined the development of 

symptomatic treatment and also the possibility to extend the intervention of medications 

that might stop or slow the progression of the disease (Schapira 2009b). This section 

explains the different treatment strategies that could be used to treat Parkinson’s patients. 

According to researchers, two types of treatment could be applied: symptomatic and 

neuroprotective treatments. 

1.4.1. Symptomatic therapy. 

Understanding of the clinical manifestation in PD is necessary for the diagnosis of 

the disease to choose the proper medication and treatment (Oscar Bernal-Pacheco 

2012). From the symptomatic treatment point of view, enormous progress has been made 

in the treatment of PD over the past decades; Levodopa remains the gold standard in 

controlling the symptoms of PD. Before choosing the first line medication for PD, the level 
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of impairment and the precise diagnosis must be done (Jankovic and Aguilar 2008). The 

treatment plan for each PD patient should depend on each individual, the medications 

alleviate the symptoms in Parkinson’s patients (Chen et al. 2016). Drugs that produce 

symptomatic relief in PD act either by elevating the regional dopamine levels such as 

levodopa, monoamine oxidase (MAO) Inhibitors, catechol-o-methyl-transferase (COMT) 

inhibitors or by stimulating dopamine receptors as dopamine agonists (DA), inhibiting the 

effect of cholinergic afferents (anticholinergics), or inhibiting glutaminergic NMDA 

receptors (amantadine) (Figure 12, 13) (Chen et al. 2016; Jankovic and Aguilar 2008; 

'Parkinson Disease: Neurologic Pathways & Drug Targets'  2015).  

1.4.1.1. Levodopa Therapy. 

L-Dopa is a DA precursor (L-3,4-dihydroxyphenylalanine), it was introduced in the 

late 1957 to reverse Parkinson-like akinesia. In 1967 it was reported that oral 

administration of L-DOPA improved the rigidity and akinesia in PD. The improvement was 

significant but with short duration of action (McDowell and Lee 1970). Levodopa is the 

first pharmacological approved drug to treat PD, and considered the gold standard in PD 

treatment (Nagal and Singla 2012). Although, L-dopa reduces the motor symptoms of 

PD; it does not show any effect on the non-motor symptoms nor halt the progression of 

the disease (Mercuri and Bernardi 2005). Levodopa is given in combination with 

carbidopa (DOPA decarboxylase inhibitor) to prevent the premature conversion of L-

DOPA into dopamine in the peripheral nervous system (PNS). This combination reduces 

the side effect of L-dopa on the periphery cardiovascular effects such as nausea and 

vomiting as well as and increases its pharmacological effects on the CNS. Levodopa in 
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the CNS is converted by the DOPA-decarboxylase enzyme to DA (Nagal and Singla 

2012). Long-term use of levodopa causes irreversible dyskinesia and motor fluctuations  

1.4.1.2. Dopamine Agonist. 

Dopamine agonists act directly on dopamine receptors at the postsynaptic region. 

Many physicians recommended the use of dopamine agonist as a first-line of treatment 

in PD. Besides, giving dopamine agonist as monotherapy, it is also used as adjuncts 

therapy to levodopa. For example, bromocriptine and pergolide have been used with 

levodopa to reduce its motor complications (Mercuri and Bernardi 2005). Dopamine 

agonist is used in PD to delay the need for levodopa; such delay is recommended to delay 

or prevent levodopa-induced complications. Pramipexole, a dopamine agonist, was given 

to PD patients in combination with levodopa, to reduce the severe side effects associated 

with levodopa (Amos D. Korczyn 2004; Murata 2009). Although this combination reduces 

the motor complication of levodopa, it causes increased somnolence and hallucination.  

Pramipexole and ropinirole are other examples of dopamine agonists, and they are 

expected to have a lower risk of complications than other dopamine agonists because of 

non-ergolines.  Pramipexole found to be safe and effective in the early stage treatment of 

PD when used as monotherapy (Jankovic and Aguilar 2008). Ropinirole has also 

exhibited to be safe in a specific dose and effective in the early PD. 

1.4.1.3. Monoamine Oxidase Inhibitors (MAO-Is). 

Monoamine oxidase inhibitors are used in the treatment of symptoms of PD. They 

work by blocking the degradation of dopamine by inhibiting the monoamine oxidase 

enzyme (Schapira 2011). Current treatments of PD involves the use of selective MAO-B 

inhibitors that addresses the deficiency of dopamine (Edmondson and Binda 2018). MAO-
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Is have also been studied for possible neuroprotective properties as a result of decreasing 

the oxidative stress (Edmondson and Binda 2018; Schapira 2011). They are used as an 

alternative therapy to treat PD.  Selegiline and safinamide are currently selective MAO-B 

inhibitors used in the market (Edmondson and Binda 2018). Selegiline was developed to 

address the symptoms in the early stage of PD (Schapira 2011), it also showed mild 

antidepressant effect. Studies suggested that selegiline might have neuroprotective 

properties. Selegiline develops some sympathomimetic side effects such as heartburn, 

nausea, dry mouth, dizziness, confusion, as well as hallucination (H and S 2006). 

Safinamide demonstrates glutamatergic antagonist effect, studies showed that selegiline 

and safinamide might be less effective to treat the motor complication compared with 

previous PD therapy (Schapira 2011; Blair and Dhillon 2017). When applied as 

monotherapy, MAO-B inhibitors provide a modest effect, but the motor function was 

significantly improved, MAO-Is can also delay the demand for levodopa (Teo and Ho 

2013). Combination of selegiline or safinamide with dopamine agonist showed significant 

improvements in the treatment of early stage of PD (Teixeira et al. 2018; H and S 2006). 

MAO-Is showed good efficacy and less side effect, so they are recommended as 

monotherapy in the early stage of treatment of PD (Löhle and Reichmann 2011). MAO-Is 

are used as an add-on to levodopa in the advanced stage of PD, and as monotherapy in 

the early stage of the disorder (Dézsi and Vécsei 2014). MAO-B inhibitors significantly 

reduced off-time and were comparable in efficacy to COMT inhibitors (Livia and Laszlo 

2017).      
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1.4.1.4. Catechol-O-methyl transferase inhibitors (COMT-Is) 

     Catechol-O-methyl transferase COMT is a primary enzyme in the metabolism of 

catecholamine compounds such as dopamine, norepinephrine (Nissinen and Männistö 

2010). Entacapone and tolcapone are examples of COMT-inhibitors, they are given in 

combination with levodopa to increase its bioavailability and efficacy. They may also be 

used for individuals who are not tolerant to dopamine agonist and are experiencing 

wearing off (Rinne, Ulmanen, and Lee 2003). Clinically used COMT inhibitor,  Entacapone 

has been used as an adjunct therapy with levodopa to treat PD who do not suffer from 

motor fluctuations (Rinne, Ulmanen, and Lee 2003).  

1.4.1.5. NMDA glutamate type receptor 

To overcome the motor complication side effects associated with previous PD 

medications, an NMDA-type glutamate receptor antagonist know as amantadine was 

developed (Chan et al. 2013). Amantadine acts by increasing dopamine release and 

blocking dopamine reuptake in the presynaptic region (Amos D. Korczyn 2004). Despite 

no clinical evidence of the effect of Amantadine in the treatment of motor function 

complication in PD, it is currently used to reduce dyskinesia (Nagal and Singla 2012). 

Amantadine may also cause a higher risk of psychiatric adverse effects in progressed PD 

patient (Nagal and Singla 2012; Bédard et al. 2011; M Goldenberg 2008; Chan et al. 

2013). 
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Figure 12. Chemical structures of pharmacological treatments for PD.   
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Figure 13. Treatment mechanisms and strategy available for PD. Abbreviations: COMT, 
catechol-O-methyl-transferase; 3-OMD, 3-O-methyldopa; DA, dopamine; 3-MT, 3-
methoxytramine; MAO, monoamine oxidase; HVA, homovanillic acid; DOPAC, 3,4 
dihydroxy phenylacetic acid  'Parkinson Disease: Neurologic Pathways & Drug Targets'  
2015) 
 
1.4.2. Neuroprotective Therapy. 

The idea behind the neuroprotection treatment strategy in PD is to delay or stop 

the progression of the disease with or without alleviating the symptoms. To develop a 

novel neuroprotective agent for PD, we need to understand the mechanism and the 

etiology of the disease. (Zhang, Dawson, and Dawson 2006). Several pathogenic factors 

have been strongly linked to the death of the neuronal cells in PD. These factors are 

oxidative and nitrative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, 

and inflammation. In PD, the dopaminergic neurons at the SNpc exposed to oxidative 

stress, which leads to the injury of the neurons. Using neuroprotective agents that will 

restore the damaged neurons or stop the damages of the neurons would be expected to 

provide neuroprotective effect (Sarkar, Raymick, and Imam 2016). L-Dopa is used to 

provide sympathetic relive by increasing the level of dopamine in the synaptic region, but 
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it could not modify the progression of the disease. Moreover, long-term use of L-dopa 

administration enhances the neuroprotection of neurons at the SNpc (Calabresi et al. 

2015). Several dopamine agonists have been proven to exhibit neuroprotection properties 

such as pramipexole (Hall et al. 1996). 

1.4.2.1. Mechanisms of Neuroprotection. 

Since PD is considered as multifactorial, an ideal neuroprotective agent should 

have the ability to act by various mechanisms to counteract the disease progression. 

Several strategies have been applied acting on the various possible mechanisms 

incorporated in agents to act as neuroprotective compounds. Neuroprotection may act by 

numerous different mechanisms; increase the level of dopamine, reduce the need for L-

dopa, activation of DA auto-receptors, antioxidant properties of DA agonists, and also as 

an antiapoptotic agent (Ossig and Reichmann 2013). The strategy of neuroprotection was 

proposed to address the deficiency of dopaminergic neurons in the substantia nigra either 

by using a replacement of dopamine as levodopa or by using MAO-I and COMT-I to 

prevent the oxidation of dopamine to increase the level of dopamine at the synaptic region 

and relief the symptoms of PD (Sarkar, Raymick, and Imam 2016). Another strategy of 

neuroprotection is the use of dopamine agonist to act directly on the dopamine receptor, 

the example of that is pramipexole which has an antioxidant mechanism, it can bind to 

the dopamine receptor at the postsynaptic region. Several antioxidant agents could be 

used to inhibit both oxidation of dopamine and formation of free radicals (Schapira 

2009b). 
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1.5. Overview of the dopamine receptor system. 

Dopamine neurons and their receptors are known to be implicated in the 

pathogenesis of PD (Hisahara and Shimohama 2011). Dopamine receptor is classified 

as a member of biogenic amine receptors belonging to G protein–coupled receptors 

(GPCRs) family (Butini et al. 2016). Dopamine is one of the monoamine neurotransmitters 

produced in several areas of the brain including the substantial nigral and the ventral 

tegmental area. This neurotransmitter activates five types of the G-protein coupled 

dopamine receptors, and they are classified into two groups: D1 like receptors: D1, D5, 

and D2 like receptors: D2, D3, D4. The D1 like receptors activate adenylate cyclase 

leading to increase the cyclic adenosine monophosphate (CAMP) while D2 like receptors 

inhibits the adenylate cyclase  to reduce the production of CAMP (Figure 14) (Levant 

1997) Goodman & Gilman's).  

 

Figure 14. Dopamine receptor system, (Goodman & Gilman's the pharmacological Basis 
of therapeutics). 
 
1.6. The clinical trial of neuroprotection in PD with dopamine receptor agonists. 

To develop a single neuroprotective therapy for Parkinson’s patients, it is essential 

to have a proper clinical diagnosis to find the common pathogenic factors (Jankovic 
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2007). In 1970 the first major neuroprotective clinical trial was designed is the DATATOP 

study. It was designed to test the neuroprotection in Parkinson’s patients using deprenyl 

(MAO-I) and Tocopherol (vitamin E). Deprenyl is a Type B monoamine oxidase inhibitor 

used in a dose of 10mg/day; MAO-B metabolizes the catecholamine including dopamine 

in the brain to its oxidized forms with the production of H2O2. H2O2 reacts with iron to 

produce hydroxyl radical resulting in oxidative stress. By giving seligiline, it will prevent 

the oxidation of dopamine and block the formation of ROS (Riederer and Youdim 1986). 

α-Tocopherol is a biologically active component of vitamin E, its mechanism of action to 

diminish the effect of lipid peroxidation by trapping free radical (Hassan, Stohs, and 

Murray 1985). The onset of disability was the primary endpoint as the indication to 

administrate L-dopa. The results showed that no beneficial effect of tocopherol and no 

interactions have seen between tocopherol and deprenyl. The endpoint time was 

determined to calculate the required time for L-dopa treatment. Deprenyl demonstrated a 

strong and significant effect on delaying the onset of disability required L-dopa treatment. 

The patients showed improvement in the first three months of treatment, and the motor 

symptoms became worse after the withdraw of the medication. The purpose of this clinical 

trial was to test if deprenyl or tocopherol can extend the length of the time before the 

patient require to administrate levodopa (group 1989).  

In conclusion, there is no current treatment available for Parkinson’s patients that 

would either stop or slow the progression of the disease or restore the dopaminergic 

neuronal loss to the normal condition. The available therapy of PD in the market is 

classified as a symptomatic treatment, they only reduce the disorder symptoms to 

improve the patient life temporarily. By designing a combination therapy of symptomatic 
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and neuroprotective treatment we might improve the patient quality of life by diminishing 

or stopping the progression of the disease or restoring the loss of the damaged neurons 

as well as alleviating the symptoms of the disease. Example of that a combination has 

dopamine agonist property as well as antioxidant property. Using selegiline in this 

experiment can diminish the symptomatic symptoms in PD patients, while deprenyl has 

antioxidant property. The mechanism of action of selegiline is not fully understood. A 

studied was carried out to understand the exact mechanism of selegiline if its effect is 

due to its symptomatic influence or it has a neuroprotection outcome. The result of this 

study showed that selegiline has a neuroprotective effect. 
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CHAPTER 2 

The unmet need to develop symptomatic and disease modifying therapeutics to 

treat Parkinson’s disease. 

Parkinson’s disease is multifactorial in nature arising from the involvement of 

several pathogenic factors (Kalia and Lang 2015). It has been proposed that treatment of 

PD with a single target drug may not be adequate due to the complex pathogenesis of 

the disease process, therefore, multiple medication drugs (MMDs) could be a reasonable 

treatment approach due to their effectiveness to engage more than one targets at the 

same time (Youdim and Buccafusco 2005). MMDs is usually composed of two or three 

different drugs that could target various targets implicated in the pathogenesis of the 

disease (Morphy and Rankovic 2005). However, multiple medications with different 

pharmacokinetic, bioavailability and metabolism properties could be challenging and can 

cause serious problems especially for elderly people and people with chronic disease 

(Hague, Klaffke, and Bandmann 2005). If a patient has other issues, it could be possible 

to develop several side effects with MMDs. Another strategy is the combination of 

different medications in the same formulation to reduce the dosing time regimen of the 

drug and also improve the patient compliance (Andrea Cavalli 2008).  

The new strategy and idea which has become the focus of the researcher lately is 

the designing and development of single multifunctional molecules (MFM) which can 

potentially target multiple pathogenic pathways involved in the pathogenesis of the 

disease (Andrea Cavalli 2008; Van der Schyf 2011). By combining different functional 

groups in the same molecule to introduce multifunctional properties that could provide a 

new avenue to treat the complex diseases where several factors are responsible for the 



www.manaraa.com

 

 

30 

pathogenesis of the disease process. Therefore, by interacting with multiple targets at the 

same time could provide pharmacokinetic advantages over using MMDs as well as less 

toxicity and more compliance. (Youdim 2010; Morphy and Rankovic 2005; Bansal and 

Silakari 2014, JP et al. 2011, Youdim 2010). There is an urgent need for such 

multifunctional single drug (MFM) to treat PD that could bring a new avenue to address 

PD (Youdim 2010). 

2.1. Previous work on development of multifunctional agents to treat 

neurodegenerative diseases. 

Several studies have been done to develop single molecules with multifunctional 

activities to treat neurodegenerative diseases. The designing of such MFD was based on 

combination of two or three pharmacophore structures acting on multiple neuronal and 

biochemical targets (Youdim and Buccafusco 2005). This new model that addresses the 

pathogenicity and complexity of PD by using a multi-targeted-single-ligand approach 

strategy has been introduced and recognized for its potential to offer better outcomes 

(Van der Schyf and Geldenhuys 2011). Researchers also use the MFM strategy to target 

neurotransmitter receptors or enzymes within the neurons. For example, examples of 

such targets are monoamine oxidase, acetylcholinesterase and catechol-O-

methyltransferase enzymes which are responsible for degrading catecholamine 

neurotransmitter,   degrading acetylcholine, and  for the metabolism of catecholamine 

neurotransmitters, respectively, (Youdim and Buccafusco 2005; Bansal and Silakari 

2014). Examples of the single drug with two or more functional properties are shown in 

Figure 14 in chapter 1. 
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2.1.1. Combination of anticholinesterases and muscarinic M2 receptor antagonism.  

JWSUS-C75IX is a bifunctional compound is a potent AChE inhibitor and high 

affinity muscarinic M2 receptor antagonist and is designed to be used as a cognitive 

enhancing drug (Fig 15?) (Van der Schyf, Geldenhuys, and Youdim 2006; Youdim and 

Buccafusco 2005). This combination exhibited the ability to enhance the release of 

acetylcholine leading to a decisive mnemonic action, and also showed a better safety 

profile than drugs that have only AChE inhibition activity by improving the 

pharmacokinetic properties as well by addressing the potential side effects.  

2.1.2. Combination of anticholinesterases and brain-selective MAO inhibitors. 

     Ladostigil (TV3326) is a combination of two moieties, carbamate (cholinesterase 

inhibitory activity) and propargyl (a selective inhibitor of the brain MAO) moieties (Fig 

15?). The selectivity of Ladostigil to inhibit the central MAO in the brain provides the 

compound with potential antidepressant activity due to increasing the level of serotonin 

in the brain. The neuroprotective effects has been attributed to the propargylamine moiety 

which activates the mitochondrial Bcl2 family of proteins, protein kinase, C-mitogen-

activated protein MAP (PKC-MAP) and the downregulation of Bad and Bax.  (Youdim and 

Buccafusco 2005). 

2.1.3. Combination of iron chelating and MAO inhibitors. 

     HLA20, M30, and M31 are neuroprotective compounds with bifunctional properties for 

being an iron chelator and MAO inhibitor (Van der Schyf 2011). The propargyl amine  

possesses neuroprotective activity by inhibiting the MAO enzyme which results in 

decreasing the production of H2O2 and the  antioxidant iron-chelator group is present as 

a 8-hydroxyquinoline derivative. By combining the two pharmacophore groups led to the 
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development of neuroprotective agents with a potential activity to treat both Alzheimer’s 

(AD) and PD (Youdim and Buccafusco 2005). HLA20 demonstrated selective inhibition 

of MAO-B, while M30 was found to be a highly potent inhibitor for both MAO-A and MAO-

B (Van der Schyf 2011). Ladostigil is a bifunctional medication used to treat dementia, 

depression in neurodegenerative diseases, and multifunctional antioxidant iron chelator 

group (Bansal and Silakari 2014). 

2.1.4. Combination of anticholinesterases and NMDA receptor antagonism. 

Donepezil (anticholinesterase inhibitor) and Amantadine (NMDA receptor 

antagonist) are used in a combination to treat dementia in moderate to severe Alzheimer’s 

disease by enhancing the memory with a potential neuroprotective property (Blanpied, 

Clarke, and Johnson 2005, Matsunaga, Kishi, and Iwata 2015, Gasparini et al. 2013). The 

mechanism of action of amantadine is to block the ion channels of NMDA receptor while 

the mechanism of action of donepezil as a reversible inhibitor is to block the breakdown 

of acetylcholine by inhibiting the acetylcholinesterase enzyme leading to increasing the 

level of acetylcholine at the cholinergic synaptic region (Bruno et al. 2012; Gasparini et 

al. 2013; Blanpied, Clarke, and Johnson 2005). There is no evidence if this combination 

could treat PD even though it improves the ability of thought process, functioning and 

behavior (Blanpied, Clarke, and Johnson 2005). By adding a L-dopa to the combination, 

the compound can be used to treat Lewy body dementia DLB (Youdim and Buccafusco 

2005; Blanpied, Clarke, and Johnson 2005). 

2.1.5. Combination of MAO-B and COMT inhibitors. 

MAO-B inhibitors (selegiline and rasagiline) and COMT inhibitors (entacapone and 

tolcapone) are used in a combination as multifunctional medications to increase the level 
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of L-dopa in the brain (Youdim and Buccafusco 2005). MAO oxidase enzyme mainly 

MAO-B in the brain reduces the level of dopamine in the synaptic region via oxidation. 

Thus, MAO-B inhibitor prevents the MOA-B from breaking down dopamine. COMTs work 

by inactivating L-dopa through a methylation which block the conversion of L-dopa to 

dopamine. Therefore, inhibiting the action of COMT leads to increase the availability of 

dopamine.  

2.1.6. Combination of neuroleptic D2 receptor antagonist and an SSRI.  

Eltropzine a neuroleptic dopamine D2 receptor antagonist and an SSRI like 

fluvoxamine, fluoxetine, or citalopram are used in combination as antidepressant and 

antipsychotic drugs to improve the negative symptoms of schizophrenia as well as to 

diminish depression, without worsening the extrapyramidal side effects (Bansal and 

Silakari 2014). 

2.1.7. Combination of squalene synthase inhibitor and anti-inflammatory. 

A biphenyl morphine derivative (squalene synthase inhibitor) and naproxen (anti-

inflammatory) are used in combination as potent anti-atherosclerotic agent. To build the 

pharmacophore of this compounds, the biphenyl ring of the morphine derivative was 

replaced with naphthalene part of naproxen to have an MFM which works as squalene 

synthase inhibitor to diminish the level of cholesterol and triglyceride and has antioxidant 

activity. (Bansal and Silakari 2014). 
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Figure 15. Structure of multi-functional drugs possess two or more pharmacological 
properties. 
 
2.2. Development of multifunctional ligands to treat PD. 

As was mentioned previously, the multifunctional compounds have become the 

focus of the researchers today to develop medications that may potentially address the 

multifactorial nature of PD by incorporating appropriate pharmacological activities 

targeting multiple pathogenic factors implicated in PD. There is an unmet need for 

multifunctional agents to treat PD because of the complex pathophysiology present in this 

disorder. Our research group has been working to develop MFD based on the hybrid 

template that was established earlier in the lab (Dutta, Fei, and Reith 2002). Our 

molecular template was designed to address several pathogenic factors implicated in the 

pathogenesis of PD (Johnson et al. 2012). The synthesized lead compounds based on 
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the hybrid template have demonstrated full agonist activities at both D2 and D3 receptors; 

in addition to the high binding and functional activities for both receptors (Johnson et al. 

2012). The synthesized compounds were tested in vivo and vitro assays. In vivo studies 

showed the ability of our lead compounds to penetrate the CNS and reverse the 

hypolocomotion of reserpinized rats in a PD animal model (Shah, Rajagopalan, Xu, 

Voshavar, Shurubor, Beal, Andersen, et al. 2014; Santra et al. 2013). The overall goal of 

designing and developing multifunctional small dopamine agonist molecules is to treat 

PD symptoms along with slowing or stopping the progression of the disease (Santra et 

al. 2013; Gogoi et al. 2011). A series of compounds based on the hybrid template 

structure was developed earlier by our group to target the critical factors involved in the 

pathogenesis of PD (Dutta, Fei, and Reith 2002; Johnson et al. 2012). The agonist head 

group was connected via a piperazine linker to other molecular moieties to produce 

various biological activities (Dutta, Fei, and Reith 2002; Johnson et al. 2012). 

2.2.1. Development of multifunctional ligands to treat PD with  neuroprotective 

properties. 

Studies have reported that carbazole compounds exert their effects by enhancing 

the formation of neurons in the subgranular zone of the dental gyrus (Bashir et al. 2015; 

Głuszyńska 2015). Aminopropyl carbazole compounds P7C3 (Figure 16) was found to 

protect newborn neurons from apoptosis to enhance neurogenesis by stabilizing the 

mitochondrial membrane potential. P7C3 was also found to improve the function of the 

hippocampus, exhibit pro-neurogenic and show potent anti-oxidative activity  (Głuszyńska 

2015; Yin et al. 2014; Wang et al. 2014; Blaya et al. 2014). Carbazol compounds showed 

to block the degeneration of the neuronal cells in models of neurodegenerative diseases 
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(Yin et al. 2014). P7C3 was modified by introducing a benzophenone and alkyne groups 

to able the compound to bind to nicotinamide phosphoribosyltransferase (NAMPT) (Wang 

et al. 2014). It was assumed that the protective properties of this derivative could be due 

to their ability to activate the phosphoribosyl transferase, which is the rate-limiting step in 

the salvage of nicotinamide adenine dinucleotide, by converting nicotinamide into 

nicotinamide adenine dinucleotide (Yin et al. 2014; Loris, Pieper, and Dietrich 2017b). 

Animal experiments results showed that these derivatives have the ability recover the 

intracellular levels of NAD which lost due to the administration of doxorubicin (Wang et 

al. 2014). The lead compound, P7C3-S243 was reported to block the axonal cell death 

and conserve the normal synaptic activity which correlated with the motor coordination 

(Yin et al. 2014). It was also reported that these carbazole molecules and their derivatives 

exhibit the ability to regenerate neurons in the substantial nigra in neurodegenerative 

diseases. 

Studies displayed that P7C3A20 carbazole derivative analogs of P7C3 displayed 

greater efficacy and affinity than P7C3 (De Jesús-Cortés et al. 2012;  Shurubor, Beal, 

Andersen Julie, et al. 2014).  The compound also inhibited the mature neuronal 

degeneration and, enhanced the perinatal neurogenesis in neurodegenerative and acute 

injury models (Wang et al. 2014). P7C3A20 also demonstrated to produce significant 

decline in the atrophy of the cortical, and hippocampal neurons (Loris, Pieper, and 

Dietrich 2017b). Given the importance of the development of neuroprotection therapies 

for neurodegenerative disease, different strategies to achieve such goals have become 

the focus of researchers in this area. 
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Figure 16. Molecular structure of lead carbazole compounds based neuroprotective 
property. 
 
2.2.2. Development of multifunctional ligands with MAOI property as 

neuroprotective therapeutic agents for PD. 

Monoamine oxidase (MAO) is a family of a flavin adenine dinucleotide (FAD)-

dependent enzyme responsible for the metabolism of catecholamine neurotransmitter 

molecules (the biogenic amines: serotonin, norepinephrine, and dopamine) in the outer 

membrane of the mitochondria in the neurons (Garbis and McElhatton 2007). Two 

isoforms of MAO enzyme have been discovered: MAO-A and MAO-B. These isoforms 

differ in their distribution in the body and the substrate they metabolize. Serotonin and 

norepinephrine are the substrates of MAO-A while benzylamine is the substrate of MAO-

B (Strydom et al. 2010). MAO-A and -B inhibitors are used as therapeutic medications in 

the treatment of neurological diseases. MAO-AI has been used in treatment of 

Depression, and MAO-BI is used in the treatment of PD. Some MAO-Is belong to the 

earlier class of drugs used in the treatment of PD (Strydom et al. 2010). The rationale 

behind the use of MAOIs in PD is to inactivate the metabolism of the neurotransmitters 

from being degraded to increase their level within the presynaptic neuron to escape into 
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the synaptic space to the site of action (Mongeau, Blier, and de Montigny 1997; 

Eisenhofer, Kopin, and Goldstein 2004). MAO-Is can also be classified into selective and 

non-selective inhibitors. Selective MAO-A inhibitors are effective in treating major 

depression while selective MAO-B inhibitors are effective in treating Parkinson disease 

(H and S 2006, Happe 2007; Dinesh et al. 2012). MAO-Is are used as a monotherapy or 

adjunct therapy to levodopa (L-DOPA) in the treatment of PD (Malco et al. ; Goldenberg 

2008). The non-selective MAO-Is have restricted use in the treatment of depression in 

PD due to their adverse effects (Riederer and Laux 2011). MAO-Is are either reversible 

or irreversible. Reversible MAO-A inhibitors including tranylcypromine are recommended 

in the treatment of depression in PD. Selective irreversible MAO-B inhibitors including 

selegiline and rasagiline are preferred for the treatment of akinesia and motor fluctuations 

in PD (Finberg 2014; Entzeroth and Ratty 2017, J. Rojas et al. 2015) . Although, MAO-Is 

inhibit the MAO enzyme, they do not inhibit MAO synthesis pathway (H and S 2006). 

MAO-Is can also inhibit enzymes other than MAO, such as dopamine-b-oxidase, diamine-

oxidase, amino-acid decarboxylase and choline dehydrogenase (H and S 2006). The 

non-selective inhibitory property of MAO-Is appears only with very high doses of the 

inhibitors, example: tranylcypromine has limited use in the treatment of depression in PD 

because of its non-selectivity, on the other hand; the selective, reversible MAO-A 

inhibitors are promoted due to their more straightforward medical management (Finberg 

2014). Medications that augment the release and production of serotonin such as tricyclic 

antidepressants, selective serotonin reuptake inhibitors may cause the serotonin 

syndrome if they are administered with the MAOIs, even at therapeutic doses 

('Antidepressants'  ; Michael-Titus, Revest, and Shortland 2010). The toxicity of MAOIs 
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may be caused by the biogenic amines such as tyramine resulting in hypertensive crises 

(Santos 1996; M Gardner et al. 1996). MAO enzymes play an important role in the 

protection of the intestinal and the hepatic systems while by inhibiting the MAO enzymes, 

the protective role is eliminated due to increase the level of tyramine  which releases 

noradrenaline from the presynaptic vesicles causing a significant effect in increasing the 

blood pressure (Foley et al. 2000; Noreddine 2016). MAO-Is lose their selectivity if they 

are given in high dose combination therapies (H and S 2006). Having a MAO-Is with 

multifunctional activity could be an avenue to overcome the side effects associated with 

the current MAO-Is, (Morphy, Kay, and Rankovic 2004). Several studies were done in this 

field in an effort to design and develop MFD with MAO-I activity to treat neurodegenerative 

diseases specially PD, examples: MT-19, MT-20, KW-6002, and CSC (Figure 17) 

(Bansal and Silakari 2014; Youdim and Buccafusco 2005). 

 

Figure 17. Structures of multimodal cholinesterase-monoamine oxidase inhibitor-iron 
chelator radical scavenger, and MAO-B and adenosine 2A receptor antagonists. 
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2.2.3. Development of multifunctional ligands to treat depression associated with 

PD. 

According to the national institute of mental health, depression has been defined 

as a common severe mental disorder that affects the lives of people from the point of 

feeling, thinking, handling the regular activities including sleeping, eating, and working.  

People with depression categorized with the loss of pleasure and interest of activity 

(Slattery and Cryan 2012). Depression affects a high percentage of the population 

(between 15-20%) in the United States, and around 450 million people in the world 

(Anxiety and Depression Association of America). Depression can be categorized 

according to the severity, the period of the disease, and the way it develops under certain 

circumstances  ('Neurocognitive Disorders').  

According to the World Health Organization (WHO), depression is an enervating 

disease which classified as the second-most cause of disability worldwide. People who 

suffer from depression are more susceptible to committing suicide (Gopishetty et al. 

2011c). According to the National Alliance of Mental Illness (NAMI), the cause of 

depression is not fully understood, it could be due to the combination of biological, 

genetical and environmental factors. Other aspects also could be involved in the 

implication of depression such as the experiences of trauma in the early age.  

Although medications are approved in the market to treat depression, it is 

estimated that 30-40% of patients do not respond sufficiently to them. The therapies for 

depression include tricyclic antidepressants (TCA), and monoamine oxidase inhibitors 

(MAO-I) (Oestergaard and Møldrup 2011). Tricyclic antidepressant and monoamine 

oxidase inhibitors medications were the first used as antidepressant drugs in the market. 
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Some of the examples include imipramine, amitriptyline, nortriptyline, phenelzine, and 

tranylcypromine (Figure 18) (Lopez-Munoz et al. 2007). However, although 

antidepressant drugs have been used for the treatment of depression over decades, they 

were plagued by their nonspecific interactions that cause severe side effects that may be 

due to their nonspecific binding (Cohen et al. 1982; Sarker et al. 2010; Taylor et al. 2005). 

The first-generation antidepressant medications were subsequently replaced by selective 

serotonin reuptake inhibitor (SSRI), selective norepinephrine reuptake inhibitor (SNRI), 

and dual reuptake inhibitor (SSRI/SNRI) which are currently in use such as fluoxetine, 

trazodone, and venlafaxine (Figure 18) (Lopez-Munoz et al. 2007; Hansen et al. 2005). 

The second generation antidepressant drugs were developed to overcome the challenges 

of the first generation by enhancing the effectiveness and decreasing the undesirable 

outcomes (Hansen et al. 2005). A significant proportion of individuals suffering from 

depression continue to suffer from their symptoms under the current therapies. Dual 

reuptake inhibitors still exhibit slow onset of action, low rate of response and side effects 

(Stahl et al. 2004). Dopaminergic activity has not been included in the current 

antidepressant therapy, when dopamine has been implicated strongly in depression 

(Gartlehner G ; Santra, Gogoi, Gopishetty, Antonio, Zhen, Reith, et al. 2012). Preclinical 

and clinical studies, demonstrated anhedonia as a central component of depression, 

which develops due to deficit in dopamine activity (Dichter 2010). As the mesolimbic 

dopamine is associated with reward-related behavior (anhedonia), dopaminergic drug 

should address anhedonia in depression (Papp, Klimek, and Willner 1994). Therefore, 

triple uptake inhibitor which includes dopaminergic activity should address the unmet 

need to treat depression in PD (Sharma, Santra, and Dutta 2015). 
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Figure 18. Major classes of antidepressant drugs.  

Evolution of triple reuptake inhibitors as the next-generation to treat depression 

would be more efficacious (Liang and Richelson 2008; Sharma, Santra, and Dutta 2015). 

Triple reuptake inhibitor is a novel approach to develop new generation antidepressant 

which has been introduced recently to overcome the constraint associated with the 

current antidepressant drugs (Bruno, Mostafa El, and Pierre 2009). Researchers have 

found that treating depression in Parkinson’s patients in addition to treating the motor 

symptoms would improve the overall quality of life (Titova and Chaudhuri 2017). Indeed, 

researchers have also assumed that people with PD might have a higher number of 

reuptake pumps for the serotonin, the brain chemical messenger, than normal people (De 

Jesús-Cortés et al. 2012; 'Depression and Parkinson's disease: a review'  1992; Marsh 

2013; Cummings 1992). Studies showed that Parkinson’s people have high risk of 

developing depression than normal population. Developing medications to treat 
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depression in PD would be a novel approach (Hemmerle, Herman, and Seroogy 2012). 

Our group has been actively embarked on the development of 3,6-disubstituted and 2,4,5-

trisubstituted pyran derivatives targeting monoamine transporters (Santra, Gogoi, 

Gopishetty, Antonio, Zhen, Reith, et al. 2012). These pyran derivatives showed higher 

affinity for NET and SERT and moderate affinity for dopamine transporter (DAT) when 

compared with the piperidine counterparts (Zhang et al. 2005a). One of the explanations 

of the lower affinity for DAT could be due to the replacement of N-atom in the piperidine 

analogous by a less basic O-atom (Zhang et al. 2005a). The lead TUIs D-142, D-161 

were designed and found to be effective in animal models of depression to show 

antidepressant-like activity (Santra, Gogoi, Gopishetty, Antonio, Zhen, Reith, et al. 2012; 

Gopishetty et al. 2011a). D-473 is another TUIs was tested in animal for its penetration 

to the brain, rat forced swim and locomotor activities. The compound showed good brain 

penetration and effective activity in rat forced swim test but did not exhibit any locomotion 

activity (Dutta et al. 2014). D-142 exhibited potent antidepressant activity by inhibiting the 

reuptake of serotonin, norepinephrine and dopamine, it also showed to diminish the 

immobility in the mouse tail suspension test (Figure 19) (Dutta et al. 2011).    

 

Figure 19. Molecular structure of lead pyran-molecule based triple uptake inhibitors. 
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Chapter 3- Hypothesis and Specific aims. 

Parkinson’s disease is the second most common neurodegenerative disorders that 

is considered as an age-related disease affecting a worldwide population (Hindle 2010; 

Collier, Kanaan, and Kordower 2011). The symptoms of PD are categorized into  motor 

and non-motor symptoms (Visanji and Marras 2015). According to the current Parkinson’s 

theory (Braak’s hypothesis) , the non-motor symptoms may appear early before the motor 

symptom, resulting in an early diagnosis of the disease that might help to prevent the 

progression of the disease (Visanji et al. 2013). The existing treatments for PD are 

classified into monotherapy and multitherapy (a combination of two medications), the 

monotherapy includes levodopa, monoamine oxidase B (MAO-B), inhibitors and 

dopamine agonists while the multitherapy includes catechol-O-methyl transferase 

(COMT) inhibitor with levodopa or dopamine agonists with levodopa (Amos D. Korczyn 

2004). However, these medications are only able to improve the symptoms of the 

disease. Additionally, they produce severe side effects such as dyskinesia and motor 

fluctuation from long-term therapy with L-DOPA (Dushanova 2012; Sheikh et al. 2012).  

3.1.  Hypothesis 

Parkinson’s disease (PD) is a chronic progressive neurodegenerative disease with 

multiple pathogeneic factors (Sheikh et al. 2012; Facecchia et al. 2011; Alves et al. 2008). 

To address the complexity of the disease process, compounds targeting several 

pathogenic features relevant to PD were developed to offer an advantage to treat the 

illness over a single targeting drug. The overall goal and hypothesis of this work is to 

design and develop multifunctional D2/D3 dopamine agonists to treat not only motor 

dysfunction symptoms in PD but also to provide disease modifying effects to slow the 
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progression of the disease. By addressing multiple pathogenic factors implicated in the 

pathogenesis of PD using multifunctional compounds, the progression and the 

symptomatic aspects of Parkinson’s disease could be potentially reduced or slowed. The 

proposed compounds are multifunctional dopamine D2/D3 receptors agonists with 

neuroprotective, antioxidants properties.  Carbazole derivatives and MAO inhibitors have 

been demonstrated to exhibit neuroprotective properties and as such incorporation of 

these moieties in our multifunctional dopamine agonist template will address not only 

symptomatic aspect of the disease but also should provide neuroprotective properties 

(Głuszyńska 2015? ; Gopishetty et al. 2011b?). The other goal of this work is to develop 

multifunctional small molecules to block the monoamine transporter based on unique 

pyran template that has been previously developed and established to produce 

monoamine transporter blocking activity which would not only treat symptomatic aspects 

of the disease but would also have the potential to treat depression, non-motoric 

symptom, accompanied with PD as a promising approach for new generation to treat PD 

(Gopishetty et al. 2011b).   

3.2. General aim. 

The general aim of this project is to design a library of D2/D3 dopamine agonist 

compounds by linking D2/D3 agonist moiety to other pharmacophore moieties with 

different functional activities to produce neuroprotective and antioxidant activities to treat 

PD. The synthesis of the lead compounds was relied on the hybrid template that 

previously established and developed to conduct a structure-activity relationship (SAR) 

study by linking D2/D3 agonist moiety to either novel carbazole moiety or pharmacophore 

of MAO-inhibitors. Another approach focussed on the development of unique pyran 
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template that has been designed and established to produce monoamine transporter 

blocking activity and the lead compounds were found to be efficacious both in vitro and 

in vivo assays.  

3.2. Specific aims. 

To accomplish the goal in this project, the following specific aims were proposed: 

a. Design and synthesize of novel carbazole based multifunctional dopamine D2/D3 

agonists that can potentially exhibit neuroprotective and antioxidant activities. The 

molecules are designed by linking carbazole moieties with D2/D3 agonist moiety 

through a piperazine linker based on the hybrid molecular template. A SAR study 

has been carried out to assess the effect of different molecular attachment of 

carbazole moiety at different position with the different D2/D3 agonist moieties. 

b. Design and synthesis of D2/D3 agonists that can inhibit monoamine oxidase 

enzyme. The molecules were designed by linking the propargyl containing group 

to D2/D3 agonist through a piperazine linker based on hybrid molecular template. 

A SAR study has been carried out to evaluate the effect of MAO inhibiton activity 

by linking propargyl moiety to the different D2/D3 agonist moieties. 

c. Design and synthesis of D2/D3 agonists that could potentially block the monoamine 

reuptake transporters by incorporating the novel pyran moiety to build the 

structure-activity relationship study. 

3.2.1. In Vitro binding Studies (Radioligand binding assay). 

     The synthesized compounds have been assessed for their binding affinity and 

selectivity towards the human D2 and D3 dopamine receptors using in vitro competitive 

radioligand binding assays.  
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3.2.2. In Vitro Functional Studies ([35S] GTPγS Binding in vitro functional 

assay). 

Based on the binding affinity, the Selected compounds were further evaluated for 

their functional activity through the in vitro functional assay. 

3.2.3.  In vitro neuroprotection study. 

Selected lead compounds containing carbazole moiety have been also    evaluated 

for their neuroprotective effect to protect PC12 cells from toxicity induced by 6-

hydroxydopamine (6-OHDA) in vitro cellular neurotoxin-based model for PD. 

3.2.4.  In vitro Antioxidant study. 

In addition to the neuroprotection assay, selected lead compounds containing the 

carbazole moiety have been assessed for their ability to reduce the reactive oxygen 

species generated by 6-OHDA in PC12 cells.  

3.2.5. In vitro Monoamine oxidase inhibitors assay. 

Selected lead compounds containing propargyl moiety have been tested for their 

ability to inhibit MAO enzyme activities using in vitro enzymatic assays. 

3.2.6. In vivo assay with rat model of PD. 

     Selected lead compounds have been further evaluated for their efficacy and potency 

to reverse the hypolocomtion in reserpine-treated rat model, a PD animal model for 

symptomatic activity. 
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* CHAPTER 4 & 5 CONTAIN MATERIAL FROM PUBLISHED WORK IN WHICH I WAS 
THE FIRST AUTHOR. THE CO-AUTHORS OF THESE PUBLICATIONS AGREE TO 
THE USE OF THE PUBLISHED DATA IN THIS DISSERTATION. 
 

Chapter 4- Result and discussion 

4.1. Overview. 

This project has three main objectives. The first objective is to design 

multifunctional D2/D3 agonist molecules with neuroprotection and antioxidant properties 

to address multiple pathogenic factors of PD.  Design of such hybrid molecular template 

by combining D2/D3 agonist head groups to carbazole moiety that might be suitable to 

modulate the pathogenic pathway of PD to produce neuroprotective properties. Lead 

compounds were identified from in vitro receptor binding and functional assays. Based 

on the D2/D3 binding assay, compounds were selected and subjected to the GTPγS 

functional assay. Compounds with agonist activity were selected for further in-vitro 

neuroprotection and antioxidant assays. Subsequently, lead compounds were subjected 

to in-vivo assay using a well-established Parkinson’s disease (PD) animal model. The 

second goal is to develop and design a series of multifunctional D2/D3 receptor agonist 

with monoamine oxidase B (MAO-B) inhibitory activity. The development was based on 

introduction of a propargyl group into the hybrid template. The third objective is to design 

and synthesize small molecules as Triple reuptake transporter inhibitors that can have 

the potential to treat depression, symptomatic aspects and non-motoric symptoms of PD 

based on the pyran template.   

This chapter describes the chemistry involved in generating the library, the data from the 

in vitro binding and functional receptors assay, neuroprotection and antioxidants activities 
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of selected compounds as well as the in vivo efficacy. The details of all the experiments 

and procedures will be explained in chapter 5. 

4.2. Design, Synthesis and Pharmacological Characterization of Carbazole 

Based Dopamine Agonists as Potential Symptomatic and Neuroprotective 

Therapeutic Agents for Parkinson’s Disease. 

In continuing our work to design multifunctional dopamine D2/D3 receptor agonists 

to address multiple pathogenic factors of PD and the symptomatic aspects involved led 

us to embark upon a drug discovery approach focused on novel multifunctional dopamine 

D2/D3 agonist molecules. Thus, we have shown from our recent studies that lead molecule 

like D-512 and D-607 (Figure 20) not only to have the potential to provide robust 

symptomatic effect but also produced potent neuroprotective effects in various in vitro 

and in vivo experiments (Shah, Rajagopalan, Xu, Voshavar, Shurubor, Beal, Andersen, 

et al. 2014; Johnson et al. 2012; Das, Kandegedara, et al. 2017; Das, Rajagopalan, et al. 

2017). In our current study, we carried out our structure activity relationship (SAR) study 

on carbazole based molecules that have previously been identified to have 

neuroprotective properties (Gluszynska 2015; Wu et al. 2017; Wang et al. 2016; 

MacMillan et al. 2011). Specifically, our hybrid structure strategy (Figure 21) which 

combines D2/D3 agonist head groups with other moieties that are suitable to modulate the 

pathogenic pathway of PD, led to development of molecules to validate our proof of 

concept (Das, Kandegedara, et al. 2017; Biswas et al. 2008; Das et al. 2015; Modi et al. 

2014; Luo et al. 2016; Johnson et al. 2012). Previous studies have shown that carbazole 

containing compounds exert neuroprotective properties by enhancing the formation of 

neurons in the subgranular zone of the dental gyrus (Pieper et al. 2010; Loris, Pieper, and 
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Dietrich 2017a). Moreover, scientists have reported that carbazole molecules and their 

derivatives exhibit ability to regenerate the neurons in the substantia nigra in 

neurodegenerative disease (Wang et al. 2016; Yoon et al. 2013; Loris, Pieper, and 

Dietrich 2017a). Based on these findings, we designed and developed a number of 

multifunctional molecules by covalently attaching D2/D3 agonist head groups such as 

pramipexole and 5-OH-DPAT to various carbazole moieties through a piperazine linker 

(Scheme 1-3).  

In our current work, a series of compounds were synthesized, and the selected 

compounds were characterized by in vitro binding and GTPγS functional assays to 

examine the affinity and potency at both D2 and D3 receptors. The selected compounds 

were subjected to further in vitro experiments to evaluate the neuroprotection and 

antioxidants properties. In addition to the in vitro evaluation, PD animal model study was 

established to assess in vivo activity in the reserpinized rats.     

 

Figure 20. Molecular structures of dopamine D2 /D3 receptor agonists, and carbazole 
compounds with neuroprotective properties. 
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Figure 21. The hybrid molecule template for multifunctional dopamine D2/D3 receptor 
agonists. 
 
4.2.1. Chemistry involved in the synthesis of carbazole based D2/D3 agonists. 

In this study, a series of compounds were synthesized by incorporating the agonist 

head group (aminotetralin or bioisosteric equivalent) with carbazole functionality via 

ethylpiperazine linker (scheme 1, 2 and 3). Scheme 1 outlines the syntheses of final 

compounds (±)-10a, (±)-10b, (±)-10c and (-)-11a, (-)-11b, (-)-11c. A palladium catalyzed 

coupling of (4-bromophenyl)boronic acid and 1-bromo-2-nitrobenzene afforded 4'-bromo-

2-nitro-1,1'-biphenyl (2a), which was then subjected to cyclization in the presence of PPh3 

to get 2-bromo-9H-carbazole (3a) (Kim and Lee 2013) followed by N-protection using di-

tert-butyl dicarbonate in the presence of 4-dimethylaminopyridine (4-DMAP) to afford 4a. 

Palladium-catalyzed cross coupling of 4a with 1-(2-((tert-butyldimethylsilyl)oxy)-

ethyl)piperazine (Das et al. 2015) in the presence of Cs2CO3 and BINAP in toluene under 

refluxing condition yielded intermediate 5a. The silyl protecting group of compound 5a 

was removed by treatment with n-Bu4NF (TBAF) in THF to afford the alcohol 6a, which 
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on subsequent oxidation in the presence of pyridine-sulfur trioxide yielded the 

corresponding aldehyde 7a. Reductive amination of the aldehyde with either (±) or (-)-

pramipexole in the presence of NaBH(OAc)3 afforded compounds 8a and 9a, 

respectively. Finally, the amine protecting t-Boc groups were removed by treatment with 

trifluoroacetic acid to furnish the final compounds (±)-10a and (-)-11a as TFA salts. The 

other final compounds (±)-10b, (±)-10c, (-)-11b and (-)-11c were also prepared in a similar 

fashion as described above, where 3-Bromo-9H-carbazole and 4-Bromo-9H-carbazole 

were used as the starting materials, respectively. 

 

Scheme 1. Synthesis of the carbazole compounds 10a, 10b, 10c, 11a, 11b, and 11c. 
Reagents and conditions:  a) Pd(PPh3)4, 2M K2CO3, THF, 90 °C, 12 h; b) PPh3, 1,2-
dichlorobenzene, 170 °C, 12 h; c) (Boc)2O, 4-DMAP, THF, rt, overnight; d) 1-[2-(tert-butyl-
dimethyl-silanyloxy)-ethyl]-piperazine, Pd(OAc)2, BINAP, Cs2CO3, toluene, reflux, 24 h; 
e) n-Bu4NF, THF, 0 °C to rt, 2 h; f) SO3.py, CH2Cl2:DMSO (2:1), Et3N, 0 °C to rt, 2 h; g) 
(±) or (-)-pramipexole, NaBH(OAc)3, CH2Cl2, rt, 48 h; h) CF3COOH, CH2Cl2, 0 °C to rt, 3 
h. 
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Scheme 2 depicts the syntheses of the final compounds (±)-14a, (±)-14b, (±)-14c 

and (-)-15a, (-)-15b, (-)-15c. To prepare these compounds, we employed (±) and (-)-(5-

methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-amine and reductively alkylated with 

intermediate aldehydes 7a-7c in the presence of NaBH(OAc)3 as the reducing agent to 

afford compounds (±)-12a, (±)-12b, (±)-12c, (-)-13a, (-)-13b, and (-)-13c. Finally, 

demethylation and removal of the amine protecting t-Boc groups were carried out in one 

step by refluxing with aq. HBr to give the final compounds (±)-14a, (±)-14b, (±)-14c, (-)-

15a, (-)-15b, and (-)-15c as HBr salts.  

 

Scheme 2. Synthesis of the compounds (±)-14a (D-654), (±)-14b (D-650), (±)-14c (D-
655), (-)-15a (D-653), (-)-15b (D-659) and (-)-15c (D-656). Reagents and conditions: a) 
(±) or (-)-(5-methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-amine, NaBH(OAc)3, 
CH2Cl2, rt, 48 h; b) 48% aq. HBr, reflux, 5 h. 
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on TBDMS deprotection in the presence of TBAF in THF afforded alcohol 18 in excellent 

yield. Alcohol 18 was next oxidized in the presence of pyridine-sulfur trioxide to yield the 

corresponding aldehyde 19, which was then condensed with (±) or (-)- pramipexole in the 

presence of NaBH(OAc)3 to afford compounds (±)-20 and (-)-21. These two molecules 

were converted to their corresponding HCl salts by treatment with ethereal HCl. To 

prepare compound (-)-23 we employed (-)-(5-methoxy-1,2,3,4-tetrahydro-naphthalen-2-

yl)-propyl-amine and reductively alkylated with intermediate aldehydes 19 in the presence 

of NaBH(OAc)3 as the reducing agent to afford compound (-)-22. Finally, demethylation 

and removal of the amine protecting t-Boc groups were carried out in one step by refluxing 

with aq. HBr to give the final compounds (-)-23 as HBr salts. All the final compounds were 

characterized by 1H and 13C NMR as well as elemental analysis.  

 

Scheme 3. Synthesis of compounds (±)-20 (D-626), (-)-21 (D-637), and (-)-23 (D-689). 
reagents and conditions:  a) K2CO3, KOH, TBAB,  50 °C, overnight;b) K2CO3, CH3CN, 
reflux, 24 h;c) n-Bu4NF, THF, 0 °C to rt, 3 h; d) SO3.py, CH2Cl2:DMSO (2:1), Et3N, 0 °C 
to rt, 2h; e) (±) or (-)-pramipexole, NaBH(OAc)3, CH2Cl2, rt, 48 h.f) (-)-5-methoxy-1,2,3,4-
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tetrahydro-naphthalen-2-yl)-propyl-amine, NaBH(OAc)3, CH2Cl2, rt, 48 h; g) 48% aq. HBr, 
reflux, 5 h. 
 
4.2.2. In vitro characterization of the Carbazole Based Dopamine Agonists 

molecules. 

4.2.2.1. Potency and Agonism at DA D2 and D3 Receptors.  

Our ongoing effort to develop multifunctional compounds for the symptomatic and 

disease-modifying treatment of PD is based on a hybrid drug design approach in which 

DA agonist head groups are covalently attached to a variety of moieties capable of 

producing biological effects which might be important for modulating the pathogenesis of 

PD (Das, Modi, and Dutta 2015; Dutta, Fei, and Reith 2002; Li et al. 2010; Shah, 

Rajagopalan, Xu, Voshavar, Shurubor, Beal, Andersen, et al. 2014; Yedlapudi et al. 2016; 

Das, Rajagopalan, et al. 2017; Das, Kandegedara, et al. 2017). Recently, we have 

developed compounds such as D-512 (Figure 20), which have revealed superior 

antiparkinsonian effects in vivo over a clinically approved drug, ropinirole (Lindenbach et 

al. 2017). Selected drugs also displayed neuroprotective properties in a myriad of in vivo 

and in vitro assays validating our proof of concept and thus, provide a strong support for 

our multifunctional drug development approach (Lindenbach et al. 2017; Das, 

Rajagopalan, et al. 2017; Das, Kandegedara, et al. 2017; Shah, Rajagopalan, Xu, 

Voshavar, Shurubor, Beal, Andersen, et al. 2014; Santra et al. 2013; Yedlapudi et al. 

2016; Li et al. 2010). As a part of continuing our work, we have now designed and 

synthesized a series of molecules where covalent modification of core carbazole moiety 

at different positions has been incorporated into our hybrid D2/D3 agonist template. The 

rationale of using the carbazole is based on the fact that a novel aminopropyl carbazole 

P7C3 and its analogue P7C3A20 (Figure 20) have shown proneurogenic and 



www.manaraa.com

 

 

56 

neuroprotective properties in aged rats, stabilized mitochondrial membrane potential and 

inhibited newborn hippocampal neuron apoptosis (Pieper et al. 2010). Our current study 

is aimed at investigating the influence of molecular and chemical flexibility of the 

carbazole fragment when attached to our hybrid template as it relates to D2/D3 receptor 

binding and functional activity along with neuroprotection potential. 

To evaluate receptor binding of the final compounds, a radioligand competition 

assay was conducted and the binding affinity profiles were compared with that of the 

reference agent (S)-5-OH-DPAT (Table 1). Binding affinity was determined by inhibition 

of [3H] spiroperidol binding to rat DA D2 and D3 receptors expressed in HEK-293 cells as 

described by us previously (Biswas et al. 2008). Table 1 summarizes the binding data for 

analogues that were synthesized. Compounds (±)-10a-c, which incorporate racemic 2-

aminothiazole head group and a piperazine ring connected to the different positions of 

carbazole ring, displayed high affinity for D3 and low to moderate affinity for D2 receptors. 

When the positions of attachment are at carbon 2 and 3 of the carbazole moiety for 

compounds 10a and 10b, respectively, both the compounds displayed low affinity for D2 

and high affinity for the D3 receptors with high selectivity (Ki, D2 = 902 nM, D3 = 6.18 nM, 

D2/D3 = 146 and D2 = 612 nM, D3 = 3.12 nM, D2/D3 = 196 for 10a and 10b, respectively). 

Interestingly, covalent attachment at position 4 of the carbazole ring dramatically 

improved the affinity for D2 while that for D3 receptor remained the same (Ki, D2 = 76.9 

nM, D3 = 7.8 nM, D2/D3 = 9.86 for 10c). This indicated highest tolerance of the 4-

substituted carbazole derivative for interaction with the D2 and D3 receptors. As expected, 

we observed a 2-4-fold improvement in binding affinity when enantiomerically pure 

aminothiazole moiety was attached to the carbazole as in (-)-11a and (-)-11b compared 
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to their racemic counterparts (Ki, D2 = 504 nM, D3 = 3.94 nM, D2/D3 = 128 and D2 = 135 

nM, D3 = 3.80 nM, D2/D3 = 35 for (-)-11a and (-)-11b respectively). However, for (-)-11c 

we did not observe much difference from its racemic version. 

Next, we wanted to evaluate the effect of bioisosteric replacement of the 

aminothiazole moiety with aminotetraline functionality on the receptor binding of target 

compounds. In corroboration with our previous results (Ghosh et al. 2010a; Das, 

Kandegedara, et al. 2017). Aminotetraline substituted compounds (±)-14a-c and (-)-15a-

c exhibited high affinity at both D2 and D3 receptors. For instance, the aminotetraline 

analogue (-)-15a has been found to have very high affinity for D2 and subnanomolar 

preferential affinity for D3 receptor compared to the corresponding thiazolidium 

counterpart (-)-11a (Ki, D2 = 71.2 nM, D3 = 0.40 nM, D2/D3 = 177 for (-)-15a vs D2 = 504 

nM, D3 = 3.94 nM, D2/D3 = 128 for (-)-11a). Among the three enantiomerically pure 

isomers (-)-15a-c, which differ only in the substitution positions at the carbazole moiety, 

positions 2, 3 and 4, showed variable binding affinity at both D2 and D3 receptors (Ki, D2 

= 71.2 nM, D3 = 0.40 nM for (-)-15a (; D2 = 61.6 nM, D3 = 1.94 nM for (-)-15b and D2 = 

16.9 nM, D3 = 0.36 nM for (-)-15c). As discussed before, substitution at the 4-position of 

the carbazole aromatic ring resulted in compounds 10c, (-)-11c, 14c and (-)-15c) with 

better D2/D3 binding affinities in comparison to other isomeric analogues with compound 

(-)-15c exhibiting the highest affinity among all the molecules, underscoring the 

importance of positional attachment to the carbazole ring. Finally, the binding affinities 

were evaluated for another series of compounds in which the piperazine ring of the 

agonist fragment was appended directly to the carbazole nitrogen atom through a 

methylene linker. As shown in Table 1, enantiomeric compound (-)-21 displayed relatively 
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higher binding affinity at D2 and comparable affinity at D3 receptor with moderate 

selectivity compared to the racemic compound (±)-20 (Ki, D2 = 435 nM, D3 = 6.60 nM, 

D2/D3 = 65.9 and D2 = 82.6 nM, D3 = 7.18 nM, D2/D3 = 12 for 20 and (-)-21, respectively). 

This structural modification suggests no significant differences in DA receptor interaction 

between compounds where the carbazole moiety is attached either at the 2/3 positions 

of the aromatic ring or through the nitrogen atom; however, a prominent difference exists 

for compounds where the carbazole nitrogen is sterically free to probably participate in 

additional receptor interaction (e.g. (-)-15c vs (-)-15b and (-)-21).    

Table 1. Ki values (nM) for inhibition of [3H] spiroperidol binding (HEK - D2,3 cells)a 
(cLogP and tPSA values are calculated using ChemDraw) 

 
 

Compound 

Ki (nM)  

D2L/D3 

 

cLogP 

 

tPSA D2L, [3H]spiroperidol D3, [3H]spiroperidol 

(-)-5-OH-DPAT 153 ± 32 2.07 ± 0.38 74   

(±)-10a 902 ± 132 6.18 ± 0.91 146 4.87 60.13 

(±)-10b 612 ± 92 3.12 ± 0.62 196 4.87 60.13 

(±)-10c 76.9 ± 5.2 7.8 ± 1.17 9.86 4.87 60.13 

(-)-11a 504 ± 50 3.94 ± 0.62 128 4.87 60.13 

(-)-11b 135 ± 12 3.8 ± 0.38 35.4 4.87 60.13 

(±)-10a (D-652): R2=H, R3=H
(±)-10b (D-627): R1=H, R3=H
(±)-10c (D-658): R1=H, R2=H
(-)-11a (D-651): R2=H, R3=H
(-)-11b (D-636): R1=H, R3=H
(-)-11c (D-657): R1=H, R2=H

N
H

R3
R2

R1
NNN

N

S
H2N

N
H

R3
R2

R1

N
NN

OH

(±)-14a (D-654): R2=H, R3=H
(±)-14b (D-650): R1=H, R3=H
(±)-14c (D-655): R1=H, R2=H
(-)-15a (D-653): R2=H, R3=H
(-)-15b (D-659): R1=H, R3=H
(-)-15c (D-656): R1=H, R2=H
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(-)-11c 92.4 ± 8.5 4.18 ± 0.47 22.2 4.87 60.13 

(±)-14a 62.1 ± 7.3 2.85 ± 0.62 21.8 6.12 41.98 

(±)-14b 37.8 ± 4.7 1.87 ± 0.41 20.2 6.12 41.98 

(±)-14c 29.4 ± 1.3 3.61± 0.28 8.13 6.12 41.98 

(-)-15a 71.2 ± 9.6 0.400 ± 0.038 177 6.12 41.98 

(-)-15b 61.6 ± 3.8 1.94 ± 0.18 31.8 6.12 41.98 

(-)-15c 16.9 ± 1.9 0.362 ± 0.032 46.9 6.12 41.98 

(±)-20 435 ± 90 6.60 ± 1.13 65.9 5.11  

(-)-21 82.6 ± 13.8 7.18 ± 0.86 11.5 5.11  

a
Results are expressed as means ± SEM for 3-6 experiments each performed in triplicate. 

 

On the basis of the binding results, functional activities of the optically active lead 

compounds for human DA D2 and D3 receptors expressed in CHO cells were measured 

by monitoring stimulation of [35S] GTPγS binding in comparison to stimulation by the 

endogenous ligand DA (Biswas et al. 2008). Comparison with the maximum stimulation 

(Emax), produced by the full agonist DA, indicates whether the compound is a full agonist, 

a partial agonist, or an antagonist. As shown in Table 2, aminothiazole containing 

compounds (-)-11b and (-)-11c demonstrated moderate potency at both D2 and D3 

receptors (EC50 (GTPγS); D2 = 48.7, D3 = 0.96 nM and D2 = 22.2, D3 = 1.67 nM, 

respectively), correlating well with binding data. While (-)-11b showed full agonist activity 

at both D2 and D3 receptors (Emax = 87-93%), compound (-)-11c revealed partial agonist 

activity at D2 and full agonism at D3 receptor (Emax = 57% vs 82%, respectively for D2 and 

D3). On the other hand, aminotetraline compound (-)-15a displayed very high functional 

potency (EC50 (GTPγS); D2 = 0.87 and D3 = 0.23 nM) and full agonism (Emax = 85-92%) 
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at both the receptors. Compound (-)-15c was also found to be highly potent and 

efficacious in stimulating both receptors (EC50 (GTPγS); D2 = 2.29 and D3 = 0.22 nM; Emax 

= 74-88%). Neither compounds displayed appreciable selectivity for D3 over D2 (Table 2) 

and their selectivity for D3 receptor dropped considerably when compared to the binding 

data (Table 1). We have also calculated the ClogP and tPSA values for all the compounds 

(Table 1). In general, the values indicate that these compounds should cross the blood 

brain barrier to produce in vivo CNS efficacy which we observed in case of (-)-11b, (-)-

15a and (-)-15c (Table 1). Therefore, our current SAR results of a series of carbazole 

compounds indicate that the affinity and selectivity for the D2/D3 receptors are governed 

by the nature of covalent attachment to the carbazole moiety and the structure of agonist 

binding head group in the hybrid molecule. 

Table 2. Stimulation of [35S]GTPγS binding to cloned human D2 and D3 receptors 
expressed in CHO cellsa 

 

 

Compound 

hCHO-D2 hCHO-D3  

 

D2/D3 

[35S]GTPγS 

EC50 (nM) 

 

Emax (%) 

[35S]GTPγS EC50 

(nM) 

 

Emax (%) 

Dopamine (DA) 146 ± 24 100 1.95 ± 0.62 100 75.0 

(-)-11b 48.7 ± 6.3 87.3 ± 2.1 0.96 ± 0.25 93.4 ± 4.4 50.7 

(-)-11c 22.2 ± 6.9 56.7 ± 5.1 1.67 ± 0.30 82.0 ± 7.0 13.3 

(-)-15a 0.87 ± 0.098 85.2 ± 4.7 0.23 ± 0.02 92.2 ± 3.3 3.79 

(-)-15c 2.29 ± 0.70 73.6 ± 10.1 0.22 ± 0.06 87.9 ± 3.8 10.3 

aEC50 is the concentration producing half maximal stimulation. For each compound, 
maximal stimulation (Emax) is expressed as a percent of the Emax observed with 1 mM (D2) 
or 100 µM (D3) of the full agonist DA (Emax, %). Results are the mean ± SEM for 3–6 
experiments, each performed in triplicate. 
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4.2.2.2. Antioxidant assay of the lead compounds. 

Cellular antioxidant activity of (-)-11b, (-)-15a and (-)-15c.  This experiment detection 

of reactive oxygen species (ROS) produced by 6-OHDA was carried out by DCFDA 

assay. 6-OHDA is a widely used toxin that mimics the generation of oxidative stress 

observed in PD and it induces neurotoxicity via its auto-oxidation and subsequent 

hydrogen peroxide generation (Blum et al. 2000; Soto-Otero et al. 2000). DCFDA is a 

non-fluorogenic dye but in the presence of ROS, it is oxidized to produce DCF which 

produces florescence. 6-OHDA is known to cause cell death in a dose-dependent manner 

via production of reactive oxygen species. From our previous and current dose-

dependent experiment of 6-OHDA, we chose 75 µM 6-OHDA which can induce 40-50% 

cell death for our study. To examine whether our compounds (-)-11b, (-)-15a and (-)-15c 

can protect PC12 cells from the ROS produced by the exposure of 75 µM 6-OHDA, the 

PC12 cells were treated with 6-OHDA after pretreatment with various concentrations of 

drugs (5, 10, 20 µM) for 24 h, and comapred with 6-OHDA treated alone cells. As shown 

in Figure 3, a well over two-fold increase in ROS was observed in  cells treated with 6-

OHDA (75 µM) alone compared to the control untreated cells (Figure 22). However, the 

test compounds could dose dependently decrease the production of ROS induced by 6-

OHDA (75 µM) in PC12 cells. In this regard, highest dose of all the three compounds was 

the most efficacious in producing significant antioxidant effect. Thus at 20 µM, a reduction 

in 93%, 36% and 76% ROS were induced by (-)-11b, (-)-15a and (-)-15c, respectively. 

Thus, D-653 was found to be the most potent antioxidant. 
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Figure 22: Detection of ROS using carboxy-H2DCFDA on relative fluorescence of PC12 
cells induced by 6-Hydroxydopamine after pretreatment with different concentrations of 
D-636 (a), D-653 (b), D-656 (c) respectively. PC12 cells were pretreated with different 
doses of D-636 (a), D-653 (b), & D-656 (c) for 24 h, the drug containing media was 
replaced with carboxy-H2DCFDA (20 µm, 2% serum) for 30 min, the carboxy-H2DCFDA 
containing media was removed, and replaced with fresh media, followed by treatment 
with 75 µM 6-OHDA, and incubated for 1 h. The PC12 treated with compounds were 
compared with non-treated cells. Data represents mean ± SDs of three independent 
experiments in four to six replicates. One-Way ANOVA analysis followed by Turkey’s 
multiple comparison post doc test was performed. (*P < 0.1, **P < 0. 01, ***P < 0. 001, 
and ****P < 0.0001 compared to the 6-OHDA, ####P < 0.0001 compared to the control). 
 
4.2.2.3. Neuroprotection Studies with PC12 cell line. 

Neuroprotection Against 6-OHDA-Induced Toxicity. To investigate the 

multifunctional property of the target molecules, we next embarked on exploring the 

neuroprotective effect of (-)-11b, (-)-15a and (-)-15c in dopaminergic rat adrenal 

Pheochromocytoma PC12 cells against 6-OHDA-induced cytotoxicity. Treatment of PC12 

cells with 6-OHDA for 24 h resulted in a significant dose-dependent neurotoxicity and the 

cell viability was significantly decreased to ~ 50% in cells exposed to 75 µM of 6-OHDA 

and this concentration was used in subsequent in vitro experiments (Shah, Rajagopalan, 

Xu, Voshavar, Shurubor, Beal, Andersen, et al. 2014). In contrast, cells treated with 

increasing concentrations of either (-)-11b or (-)-15c alone (0.01–30 µM) showed no cell 

loss at all compared to untreated controls (Figure 23a and 23e, respectively), indicating 
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the non-toxic profile of the compounds at the doses tested; however, (-)-15a showed 

some incremental toxicity starting from 20 µM dose (Figure 4c). This is an interesting 

finding in that a subtle change in the position of aromatic substitution from 2 to 4 in the 

carbazole moiety resulted in a dramatic improvement in cell survival. The potential 

neuroprotective effects of (-)-11b, (-)-15a and (-)-15c on 6-OHDA-induced toxicity were 

evaluated following pre-treatment with the drugs. Thus, when the cells were pre-treated 

with the test compounds for 24 h followed by exposure to 6-OHDA treatment for another 

24 h, the compounds dose-dependently protected the cells from the neurotoxic insult and 

the greatest protective effect was obtained at concentration of 5 µM for (-)-11b and 20 

µM for (-)-15c, both of which increased the cell survival by ~20% compared to 6-OHDA 

(75 µM) treated alone (Figure 23b and 23f). These data strongly suggest the 

neuroprotective effect of both the compounds on PC12 cell loss induced by 6-OHDA. 

Compound (-)-15a also revealed dose-dependent neuroprotection and the highest effect 

was observed at the dose of 10 µM (15%) but the effect was reversed at higher doses 

(Figure 4d). This could be due to the fact that the compound is little toxic to the cells at 

doses ≥20 µM as was seen in the drug-only toxicity experiment (Figure 23c).  



www.manaraa.com

 

 

64 

 

Figure 23: Dose dependent effect of D-636, D-653, and D-656 on cell viability of PC12 
cells from toxicity induced by 6-Hydroxydopamine after pretreatment with different 
concentrations of D-636.  (a,b, and c) Dose-dependent effect of D-636, D-653, and D-656 
respectively. (d,e, and f) PC12 cells were pretreated with different doses of D-636, D-653, 
and D-656 respectively for 1 h, followed by 75 µM 6-OHDA, and incubated for 24 h. Data 
represents mean± SDs of three independent experiments in four to six replicates. 
 
4.2.3. In vivo Efficacy of lead molecules from carbazole series compounds. 

Reversal of Reserpine-induced Hypolocomotion in Rats by (-)-11b, (-)-15a, (-

)-15c and Ropinirole. In vivo evaluation of the compounds (-)-11b, (-)-15a and (-)-15c in 

PD animal model was next performed. Reserpine induces depletion of catecholamine in 

the nerve terminals, resulting in a cataleptic condition in rats, which is a well-established 

animal model for PD (Carlsson, Lindqvist, and Magnusson 1957; Skalisz et al. 2002). 

Significant inhibition of locomotion of rats was observed 18 h after the administration of 

reserpine (5 mg/kg, sc), which indicated the development of akinesia (Figure 24). 

Compounds (-)-11b, (-)-15a and (-)-15c at the dose of 10 μMol/kg, ip, were not only highly 
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efficacious in reversing akinesia in rats, compared to reserprine treatment alone, but also 

demonstrated significant enhancement of locomotion for the entire duration of the study 

of 6 h. Among the molecules tested, (-)-15a was found to have the highest in vivo activity 

and this finding correlates nicely with in vitro functional assay where the compound 

exhibited subnanomolar potency for stimulation of D2/D3 receptors along with full agonist 

property. In contrast, treatment with the reference drug ropinirole at the dose of 10 

μMol/kg, ip, produced a quick onset of locomotor activation compared to control but with 

a much shorter duration of action compared with the test compounds. The mechanism of 

the locomotor stimulation in this reserpine model is likely to be mediated by postsynaptic 

D2/D3 receptor activation by the compounds.   

 

Figure 24. Effect of different drugs on reserpine (5.0 mg/kg, sc, 18h pretreatment) 
induced hypolocomotion in rats. Results are expressed as means + SEM for three rats. 
Plot represent horizontal locomotor activity at discrete 30 min interval after administration 
of D-636 (10 µMol/kg, i.p), D-656 (10 µMol/kg, i.p) and Ropinirole (10 µMol/kg, i.p). 
Significant effect was demonstrated by ANOVA analysis. 
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4.3. Design, and synthesis of novel multifunctional dopamine D2 /D3 receptors 

agonists containing a propargyl moiety for potential MAO-B inhibitory 

activity. 

In this section, a series of molecules were synthesized by modifying the hybrid 

molecule template (Figure 25) as previously done for other compounds (Figure 20). The 

design of these molecules involved incorporation of the propargyl group that has been 

reported to show MAO-I activity, into the hybrid structure. The synthesis of these 

propargyl derived molecules are shown in scheme (4, 5, and 6).  In the current template, 

the piperazine linker was attached to the propargyl group through either phenyl amine or 

phenyl alkoxy derivatives. 

 

Figure 25. The hybrid molecule template for multifunctional dopamine D2/D3 receptor 
agonists that may potentially inhibit the MAO-B activity. 
 
4.3.1. Synthesis of multifunctional dopamine D2/D3 receptor MAO-B inhibitors: 

 
Scheme 4 outline the synthesis of two N-propargyl compounds (±)-33 (D-671), 

and (±)-35 (D-677) in which the piperazine ring as a linker connects to the phenyl ring 

containing either N- or O-propargyl group. Palladium-catalyzed cross coupling of 
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commercially available 4-Bromo-benzonitrile 24 with 1-(2-((tert-butyldimethylsilyl)oxy)-

ethyl)piperazine (Das et al. 2015) in the presence of Cs2CO3 and BINAP in toluene under 

refluxing condition yielded intermediate 25. The silyl protecting group of compounds 24 

was removed by treatment with n-Bu4NF (TBAF) in THF to afford the alcohol 26, which 

on subsequent oxidation by pyridine-sulfur trioxide yielded the corresponding aldehyde 

27. Reductive amination of the aldehyde with (-)-5-(OH)-MPAT in the presence of 

NaBH(OAc)3 afforded compounds 28. The intermediate 28 was reduced by borane:THF 

in1.0 M THF in presence of Conc.HCl and 25 % aq. NaOH to yield the intermediate 

primary amine 29. The primary amine intermediate 29 was selectively protected by 2-

nitrobenzenesulfonyl chloride to give the sulfonamide intermediate 30. The 

nitrobenzenesulfonamide intermediate 30 was reacted with the commercially available 

propargyl bromide to get the intermediate 31. Tertiary amine 31 was deprotected by 

thioglycolic acid to generate the secondary amine 32. Finally, the compound 32 was 

subjected to either demethylation by refluxing with aq. HBr to give the final compound (±)-

33 (D-671), as HBr salt, or to N-methylation with 37% aqueous formaldehyde in a buffer 

system of NaH2PO4 to get the intermediate 34 which subjected to further O-demethylation 

by refluxing with 48% HBr to obtain the final compound (±)-35 (D-677) as HBr salt.  
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Scheme 4. Synthesis of compounds (±)-33 (D-671), and (±)-35 (D-677). Reagents and 
conditions: a) Pd(OAc)2, BINAP, Cs2CO3, Toluene, reflux, owvernight; b) TBAF, THF, 0oC 
to RT, 3 h; c) SO3py, CH2Cl2:DMSO (2:1), Et3N, 0oC to RT, 2h; d) (-)-DPAT, NaBH(OAC)3, 
CH2Cl2, 48 h; e) dryTHF, Borne in THF, 50oC, RT, 0oC, conc. HCl, 25% aq. NaOH; f) 
THF, nitrobenzylsulfonylchloride, -10oC, Et3N, RT, 1.5 h  h) Propagylbromide, K2CO3, 
CH3CN, reflux, 24 h; i) DMF, K2CO3 , 0oC, thioglycolic acid, 1 h, comp. 30 added; j) 48% 
aq. HBr, reflux, 5 h; k) 37% aq.CH2=O, NaH2PO4, zinc dust, H2O, 30oC, 48 h. l) 48% aq. 
HBr, reflux, 5 h. 

 
Scheme 5 describes the synthesis of the O-propargyl compound (±)-42 (D-678). 

The commercially available secondary amine intermediate 36 was protected by (Boc)2O 

to get the tertiary amine Intermediate 37. O-alkylation of compound 37 with the 

commercially available propargyl bromide to give compound 38. The amine protecting 

group was removed by treatment with trifluoroacetic acid to get compound 39. The 

intermediate 39 was refluxed with bromoethanol to produce alcohol 40, which was 

subsequently oxidized by the Parikh–Doering oxidation to give the corresponding 

aldehyde intermediate 41. The aldehyde intermediate was then coupled with (±)-5-OH-

MPAT to yield the final compound (±)-42 (D-678). 
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Scheme 5: Synthesis of compound (±)-42 (D-678). Reagents and conditions: a) 
(Boc)2O, DMAP, THF, 24 h; b) propagylbromide, K2CO3, CH3CN, reflux, 24 h c) TFA, 
CH2Cl2, 0oC, RT, 3 h; d) 2-bromoethanol, K2CO3, CH3CN, reflux, 24 h; e) SO3py, 
CH2Cl2:DMSO (2:1), Et3N, 0oC to RT, 2 h; f) (±)-DPAT, NaBH(OAC)3, CH2Cl2, 48 h. 
 

Scheme 6 describes the synthesis of compound (-)-49. The commercially 

available intermediates 1-(4-Nitro-phenyl)-piperazine and 2-bromoethanol were refluxed 

in acetonitrile to get the alcohol intermediate 44, which was subsequently oxidized by the 

Parikh–Doering oxidation to give the corresponding aldehyde intermediate 45. The 

aldehyde intermediate 45 was then coupled with the (-)-5-OH-MPAT to get the 

intermediate 47. Commercially available propargyl bromide) was used to react with the 

primary amine intermediate 47 to form the intermediates 48, which was further 

demethylated by 48% HBr to produce the final compound 49. 
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Scheme 6: Synthesis of compound (-)-49. reagents and conditions: a) 2-bromoethanol, 
K2CO3, CH3CN, reflux, 24 h; b ) SO3py, CH2Cl2:DMSO (2:1), Et3N, 0oC to RT, 2 h; c) (±) 
or (-)-DPAT, NaBH(OAC)3, CH2Cl2, 48  h; d) 10 mol.% pd/C, H2gas, CH3OH, 20 h; e) 
Propagylbromide, K2CO3, CH3CN, reflux, 24 h; f) 48% aq. HBr, reflux, 5 h; g) CH2=O, 
37% aq.HCHO, NaH2PO4, zinc dust, H2O, 30oC, 48 h; h) 48% aq. HBr, reflux, 5 h. 
 
4.3.2. In vitro D2/D3 receptor binding and functional assays with multifunctional 

MAOB-inhibitors. 

Our effort in this work is to develop multifunctional D2/D3 agonists with MAO 

inhibitory activity to treat and modulate the progression of PD (Das, Modi, and Dutta 2015; 

Dutta, Fei, and Reith 2002; Li et al. 2010; Shah, Rajagopalan, Xu, Voshavar, Shurubor, 

Beal, Andersen, et al. 2014; Yedlapudi et al. 2016; Das, Rajagopalan, et al. 2017; Das, 

Kandegedara, et al. 2017). In this design DA agonist head groups are covalently attached 

to a propargyl moiety via a linker (Andrea Cavalli 2008; Naoi et al. 2003; Prins, Petzer, 

and Malan 2010). The rational of using propargyl moiety was based on the previous 

research work that propargyl group has monoamine oxidase inhibiton activity. The idea 

of including a MAO inhibiton moiety in our hybrid structure came from the previously 

synthesized MAO-I such as (R)-deprenyl which was shown to inhibit the MAO-B, to 

reduce the formation of H2O2 and dopaldehyde in the brain caused by MAO-B (W. 1992) 

(Figure 26). Rasagiline (2) is a potent MAO-B inhibitor (H, Aviva, and M 2001), 
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considered to be useful as an adjuvant therapy to levodopa for the treatment of PD due 

to its ability to augment dopamine levels in the primate brain (Prins, Petzer, and Malan 

2010) (Figure 26). 

                           

 

Figure 26. Chemical Structures of Selegiline, and Rasagiline  

Binding affinity of the synthesized compounds was determined by inhibition of [3H] 

spiroperidol binding to rat DA D2 and D3 receptors expressed in HEK-293 cells as 

described by us previously (Biswas et al. 2008). In general, the decrease in the D2 binding 

affinity of the compound D-677 after methylation of the secondary nitrogen atom directly 

attached to the propargyl group was observed. The D2 binding affinity of compounds 35 

(D-677) decreased compared to its corresponding nonmethylated molecules 32 D-671 

(Ki, D 2 = 38.8 vs. 1,079 nM, Table 3) as well as a reduction in D3 binding affinity (1.30 

vs. 99.0  nM, Table 3). The great reduction in binding affinity of the D-677 could be 

explained by the importance of the hydrogen atom attached to the nitrogen. However, the 

bioisosteric version of 32-(D-671), compounds 42 (D-678) has exhibited only a slight or 

no effect in the D2 binding affinity when compared to its bioisosteric D-671 (Ki, D2 = 41.2 

vs. 38.8 nM, respectively Table 3) as well as slight or no effect in the D3 binding affinity 

compared with the same molecule (Ki, D3=0.85 vs 1.30 nM, respectively Table 3) which 

indicates tolerance of replacement of N-atom by O-atom for the binding activity to both 

D2/D3 receptors. The similarity of the binding affinity for D-671, and D-678 might be 

explained by the presence of the lone pair of electrons on the secondary amine and the 

Selegiline (R)-deprenyl Rasagiline 
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oxygen atom that would be necessary for the binding of these compound to the D2/D3 

receptors.  

Table 3. Inhibition constants determined by Competition Experiments Assessing [3H] 
Spiroperidol Binding to Cloned Rat D2L and D3 receptors Expressed in HEK-293 Cellsa 

 

 

   

(-)-33- D-671                                                                         (-)-34- D-677 

(±)-42-D-678 

 

Compound 

Ki (nM)  

D2L/D3 

 

cLogP 

 

tPSA D2L, [3H]spiroperidol D3, [3H]spiroperidol 

(-)-5-OH-DPAT 153 ± 32 2.07 ± 0.38 74   

(-)-33- D-671 38.8 ± 5.2 1.30 ± 0.13 30 4.15 33.19 

(-)-34- D-677 1,079 ± 26 99.0 ± 10 11 4.15 33.19 

(±)-42-D-678 41.2 ± 5.8 0.85 ± 5.0.01 9.86 3.95 41.98 

aResults are expressed as means + SEM. For 3-6 experiments each in triplicate. 

Based on the binding results, compounds were selected for further in vitro 

examination by measuring the stimulation of [35S] GTPγS binding to assess their ability 

to activate the human dopamine hD2 and hD3 expressed in CHO cells. Dopamine (DA) 

was used as reference because of its full agonist activity. Both (-)-33- D-671, and (±)-42-

D-678 showed a high potency (EC50 (GTPγS); D2= 0.932, 1.64, respectively, Table 4), 

and full agonist activities for D2 receptor with (Emax =97% and 91.3%, Table 4). 

Table 4. Stimulation of [35S] GTPγS Binding to Cloned Human D2 and D3 Receptors 

Expressed in CHO Cellsa 
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Compound 

hCHO-D2 hCHO-D3  

 

D2/D3 

[35S]GTPγS 

EC50 (nM) 

 

Emax (%) 

[35S]GTPγS EC50 

(nM) 

 

Emax (%) 

Dopamine (DA) 146 ± 24 100 1.95 ± 0.62 100 75.0 

(-)-33- D-671 0.932±0.212 97±17.6 0.078±0.0176 80.0±5.8 8 

(±)-42-D-678 1.64±0.30 91.3±5.3 0.197±0.064 95.8±6.9 13.3 

 
aEC50 is the concentration producing half maximal stimulation. For each compound, 
maximal stimulation (Emax%) is expressed as percent of the Emax observed with 1mM (D2) 
or 100 µM (D3) of the full agonist DA (Emax %). Results are expressed as means + SEM. 
For 3-6 experiments, each performed in triplicate. 
 
4.3.3. MAO inhibition assay with multifunctional MAO-inhibitors. 

A fluorescence-based enzymatic assay was carried out to evaluate the affinity of 

the synthesized compounds to inhibit the MAO-B activity, it was also used to evaluate the 

effect of changing the heteroatom group connecting to the propargyl group on the 

inhibition of monoamine oxidase enzyme. In this experiment, pargyline, was used as the 

reference compound. Pargyline is known to be a potent and selective MAO-B inhibitor. 

The experiment started by incubating 25 µM of the test compounds,15 µg/mL of the MAO-

B enzyme with 25 µM kynuramine used as a substrate. The fluorescence of the product 

4-hydroxyquinoline was measured as an assay readout. Among the three test 

compounds, (-)-33- D-671exhibited higher inhibitor effect on MAO-B than (±)-42-D-678, 

and less inhibitory effect on MAO-B. This result could be drawn from the effect of the 

secondary nitrogen connected directly to the propargyl group compared with the oxygen 

group on the compounds (±)-42-D-678.  
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These findings suggest that the hydrogen on the nitrogen atom connecting the 

propargyl group to the phenyl ring may potentially enhance the MAO-B enzyme inhibitory 

activity. Substitution of the nitrogen with the bioisosterically oxygen could be responsible 

for reducing the affinity to inhibit the MAO-B in compound (±)-42-D-678 compared to 

compound (-)-33- D-671. The compound (±)-42-D-678 has less receptor binding affinity 

than (-)-33- D-671. Moreover, compound (-)-33- D-671displayed better agonist potency 

at D2 receptor activity in the functional receptor assays than (±)-42-D-678. This could 

suggest that there could be a relation between the D2/D3 receptor agonist activities and 

the enzyme inhibitory activity. This could also shed the point on the requirement of further 

modifications of the current molecular template compatibility for dopamine D2/D3 

receptors binding, functional activity, and MAO-B enzyme interaction for the structural 

preference and conformational requirement. 

Table 5. The IC50 values for the inhibition of recombinant human MAO-A and MAO-B by 
compoundsa 

Compound 
MAO-A                       MAO-B                           SIb 

IC50(µM) IC50(µM)  

Pargyline 0.28 ± 0.02 10.54 ± 0.79 37.6 

(-)-33- D-671 71.90±5.805 12.38±2.282 5.80 

(±)-42-D-678 57.07±0.30 24.17±0.064 2.40 

aResults are expressed as means ± SEM for three experiments, each performed in 
triplicate. 
bSelectivity index = IC50(MAO-A)/IC 50 (MAO-B). 
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4.4. Design, development, synthesize and pharmacological studies of 

monoamine reuptake blockers.   

We previously reported pyran based triple reuptake inhibitors (TUIs), which inhibit 

reuptake of all three monoamine neurotransmitters. TUIs have been implicated for 

production of higher efficacy in antidepressant action  (Zhang et al. 2005a; Zhang et al. 

2006). Our group has been working on the development of asymmetric 3,6-disubstituted 

and 2,4,5-trisubstituted pyran derivative targeting monoamine transporters (Figure 4). 

These compounds exhibited affinity towards dopamine reuptake transporters and high 

potency for 5-HT and NE reuptake transporters (Zhang et al. 2006; Zhang et al. 2005b). 

To explore the structurally novel molecular template for the monoamine 

transporters, derivatives of well-established 2,4,5-trisubstituted pyran were synthesized 

(Figure 27). The goal of this project is to carry out the SAR of pyran based compounds 

to develop a novel multifunctional pyran molecule template to treat the motor, non-motor 

symptoms like depression associated with PD. 

 
 

Figure 27. Pharmacophore model of pyran derivatives with monoamine transporters 
molecules. 
 

In this study, the effect of connecting biphenyl substituents at position 2 on the 

pyran ring was explored directly without methylene bridge to the pyran ring (Figure 28). 

It was reasoned that connecting biphenyl groups directly to the pyran template could 
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increase the binding affinity for the dopamine transporters resulting in compounds with 

high selectivity and potency.  

 

Figure 28. Initial SAR study on pyran templates (template 1: n=1, and template 2: n=2) 
 

4.4.1. Chemistry involved in the syntheses of multifunctional D2/D3 agonist to treat 

depression in PD. 

In this study, a version of the asymmetric trisubstituted pyran derivative precursor 

was developed as described in the following schemes. 

 
 
Scheme 7; Synthesis of the intermediate racemic expoxides 54. Reagents and 
conditions: a) allylmagnesiumbromide/CuI/THF,-78oC→RT,overnight; b) NaH/ 
allylbromide/DMF, 1.5h, 0oC→RT; c) Grubb’scatalyst/benzene/reflux,2h; d) mCPBA/ 
CH2Cl2,0oC→RT. 
 

Scheme 7 outlines the synthesis of the intermediate racemic expoxides. 

Commercially available benzophenone 50 was treated with allymagnesium bromide in 

the presence of copper iodide at -78oC to obtain alcohol 51. O-Alkylation of 51 with 

allybromide in the presence of NaH at 0 oC to give compound 52, which was further 

converted to pyran derivative 53 via ring metastasis reaction in the presence of 1st 
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generation Grubbs catalyst (Sturino and Wong 1998). Direct epoxidation of olefin 53 with 

m-CPBA resulted in formation of low stereoselective trans-and cis-epoxide 54 (Zhang et 

al. 2005b).  

 

Scheme 8; Synthesis of compound D-594. Reagents and conditions: a) 
NaN3/CH3OH:H2O(8:1),NH4Cl,80oC,24h; b) CH3OH/10%Pd/C,30psi; c) aldehyde 
/CH2Cl2:CH3OH(3:1), glacialaceticacid/Na(OAC)3BH. 
 

Scheme 8 describes the synthesis of the target compound 57b (D-594) starting 

from epoxide 54.  The epoxide ring opening was achieved in the presence of sodium 

azide (NaN3) followed by the addition of NH4Cl at 80 oC to obtain the racemic azides 55, 

Which was reduced in the presence of 10% Pd-C at 30psi (1 atm) to the corresponding 

amines 56, which undergo further reductive amination with 4-methoxy-benzaldehyde to 

obtain the final compounds 57.  
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Scheme 9. Synthetic scheme for D-620 and D-621. Reagents and conditions: (a) BH3-
Me2S added in THF at 0oC/ 2hr RT→ 40oC overnight (b) amine,reflux at 100oC under N2 
overnight,ehanol. c) THF at R.T, 0oC/2 hr, 40oC→RT, add 2N HCl. Stirred for 1 hr at 40oC. 
 

Scheme 9 outlines the synthesis of compounds 60a (D-620) and 60b (D-621). 4-

methoxyphenylacetonitrile 58 was treated with borane-methyl sulfide complex to obtain 

2-(4-Methoxy-phenyl)-ethylamine 59 which reacted with the racemic epoxides 54 to 

produce compounds 60a (D-620) and 60b (D-621).                                                                                                                                                                                                                                                                                                                                                                       

 

Scheme 10. Synthesis of a regioselective epoxide 61. Reagents and conditions: (a) 
acetonitrile:DME, Na2B4O7.H2O, Na2EDTA, Tertbutyl ammonium hydrogen sulfate, 
Epoxane, RT→-10 oC, NaCl ice bath, oxone in aqueous Na2EDTA 0.004 M and K2CO3 
added.  
 

Scheme 10 describes the synthesize of enantiomer epoxides 61 in a 

stereoselective manner. Alkene 53 was carried out via Shi epoxidation catalyst to give 

optically active cis-epoxide. The regioselectivity of shi epoxidation catalyst to give cis-

epoxide was confirmed by NMR experiments. Alkene was treated with expoxone and 
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sodium ethylene diamine tetraacetic acid in a buffer media of potassium hydrogen 

monopersulfate, sodium tetraborate, tetabutylammonium hydrogen sulfate and 

potassium carbonate to give the cis-epoxide regioselectivity. The regioselectivity of the 

shi epoxidation catalyst to the give cis-epoxide was confirmed by the NMR experiments.  

 

Scheme 11. Synthesis of a regioselective compound D-620: Reagents and conditions: 
(a) 2-(4-methoxyphenyl) ethan-1-amine/ ethanol was reflux 100 oC under N2 overnight. 
 

Scheme 11 explains the synthesis of the novel pyran compound D-620 by 

introducing all the three substituents in a  regiospecific manner after opening the epoxide. 

Cis-epoxide 61 was subjected to a regioselective ring opening in the presence of 2-(4-

Methoxy-phenyl)-ethylamine to obtain compound 60a (D-620). The selectivity of the ring 

opening reaction was directed by nucleophilic attack at the site remote from the 

endocyclic oxygen atom where carbocationic character is better tolerated, the ring 

opening will involve high energy twist boat like transition state (Larin, Kochubei, and 

Atroshchenko 2014; Bagal et al. 2010). The relative stereochemistry of compound 60a 

was confirmed by NMR experiments. 

4.4.2. 1H NMR spectrum (normal proton NMR, 2-D COSY NMR, 1H homo decoupling 

(HMDC), and nuclear overhauser experiments (NOE)) studies for the 

synthesized compounds. 

4.4.2.1. The study of structure of epoxide 61. 

61

O
N
H

OH

60a (D-620)

OCH3

O

O

Ph

Ph H2ax

H2

H3eq

H1

H4

eq

H3ax

H H

HH
H

H
H

H
H

H
a



www.manaraa.com

 

 

80 

 

Figure 29. The assigment structure of epoxide 61. 

The NMR studies were done in C6D6, OCH2 and OCH to assign the chemical shift 

values of the protons in CDCl3. The assignment of protons was carried out by 1H NMR 

spectrum data (normal proton NMR and 2-D COSY NMR experiments) (Figure 29). In 

compound 61 the splitting of H-4 at δ=2.95 pm (assigned from proton nmr and COSY 

nmr) is a triplet (J=4.94). Based on the MM2 minimized 3-D model of cis epoxide, the 

torsion angle of H1-C-C-H3ax is close to 90o. As explained above, in this cis-isomer no 

coupling exists (less than 1(0.66)) between H-3ax and H-4. The bt splitting of H-4 is from 

the coupling with H-3eq and H-1 proton, respectively, this was confirmed by the splitting 

pattern of H-3ax which is a doublet of doublet (J=15.8, 0.66), The coupling interactions 

originated from the interaction with the H-3eq and slight coupling with H-4 (J=0.66, less 

than 1). The splitting of H-3eq is doublet of doublet, which arises from the coupling of H-

3ax and H-4 (J=15.8, 5.7), the doublet from the geminal coupling with H-3ax and another 

doublet from the vicinal coupling with H-4. Furthermore, 2-D COSY NMR study 

demonstrated the coupling between H-4 and H-3eq and determined coupling between H-

4 and H-3ax that verified H-4 is in the same phase as H-3eq. 

These findings were further confirmed by 1H homo decoupling (HMDC) and 

nuclear overhauser experiments (NOE) in 600 MHz NMR machine in (CDCL3): (i) 
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Irradiation of the proton signal at 2.25 ppm (H-1) collapsing br triplet at 2.95 ppm (H-4) 

into doublet and the doublet of the doublet at 3.25 ppm (H-2ax) into doublet. (ii) Irradiation 

of the proton signal at 2.95 ppm (H-4) resulted in collapsing the doublet of the doublet at 

2.25 ppm (H1) into singlet and the doublet of doublet at 2.42 ppm (H-3eq) into doublet. 

(iii) Irradiation of the proton signal at 3.25 ppm (H-2ax) collapsing the doublet at 3.85 (H-

2eq) and the doublet of the doublet at 2.25 (H-1). (iv) Irradiation of 3.85 ppm (H-2 eq) 

resulted in collapsing the signal at 3.25 ppm (H-2ax) into doublet which coupled only with 

H-1 proton. 

Further Characterization of the compound 61: It was though that one of the 

possible reasons that no such interaction was observed, may be due to the existence of 

a very small coupling constant between H-1 and H-2 proton. As a result, we could detect 

H-2ax (δ=3.25) as the doublet of the doublet pattern with a big geminal interaction (J = 

13.6 Hz) and a small vicinal interaction with H-1 (J = 1.5 Hz). It was also observed that 

the doublet of the doublet for H1is due to a vicinal coupling interaction with H-4 (J =4.3 

Hz) and a small vicinal interaction with H-2ax (J = 1.5 Hz). The coupling constant at J 

=1.5 showed that H-1 and H-2ax have interaction with H-2eq. Thus, the cis structure of 

epoxide was confirmed. 

4.4.3. In vitro evaluation of the binding affinity and functional potency for the triple 

reuptake inhibitor compounds. 

5. In vitro uptake inhibition studies was carried out with the three designed compounds 

to test their potencies for the inhibition uptake of [3H]DA, [3H]5-HT and [3H]NE  in 

the cell lines expressing the cloned human monoamine transporters (Table 7). D-

594 was evaluated for its the binding affinities at the DAT, SERT, NET in the brain 
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by measuring its inhibitory activity for the uptake of [3H] DA, [3H]-5-HT, and [3H]NE, 

and found to have weak binding affinity for the three transporters  To improve the 

binding , a modification of the compound was done by expanding the methylene 

bridge connected to the nitrogen group in position 5 in the pyran template to an 

ethylene bridge (Scheme 11) to produce compound D-620. The reason for such 

structural expansion idea was to find whether the expanded designed compound fit 

in the binding pocket of the transporters at the receptor sites. The intermediate P-

methoxybenzyl was used as a substituted group in position 5 to produce compound 

D-620 that showed a high binding affinity for the dopamine transporter than D-594 

and D-621 (Table 7). Moreover, compound D-621 exhibited good binding affinity for 

the norepinephrine transporters. The conclusion from the binding data in table 7 

that D-620 could be considered a dual reuptake transporter inhibitor as it exhibited 

the ability to inhibit both DAT, and NET.  

Table 7. Affinity of drugs at DAT, SERT, and NET in Rat Brain. 
 

Compound 
DAT uptake, 

[3H]DA∝ 
SERT uptake, 

[3H]-5-HT∝ 
NET uptake, 

[3H]NE∝ 
 

D-594 208±30 5,094±864 8,091±678  

D-620 49.2±4.6 993±113 62.6±14.5  

D-621 3,244±637 462±28 1,447±186  

For uptake by DAT, SERT, and NET: [3H] DA∝, [3H]-5-HT∝, [3H] NE∝ accumulation was 
measured. Results are the average ± SEM of three to seven independent experimental 
assays in triplicate. 
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Chapter 5- Materials and Methods 

5.11. Chemistry. 

Reagents and solvents were obtained from commercial suppliers and used as 

received unless otherwise indicated. Dry solvent was obtained according to the standard 

procedure. All reactions were performed under N2 atmosphere unless otherwise 

indicated. Analytical silica gel 60 F254-coated TLC plates were purchased from EMD 

Chemicals, Inc. and were visualized with UV light or by treatment with phosphomolybdic 

acid (PMA), or ninhydrin. Flash column chromatographic purification was done using 

Whatman Purasil 60A silica gel 230−400 mesh. Proton nuclear magnetic resonance (1H 

NMR) spectra and carbon nuclear magnetic resonance (13C NMR) spectra were 

measured on Varian 400 and 600 MHz NMR spectrometer with tetramethylsilane (TMS) 

as an internal standard. The NMR solvent used was either CDCl3 or CD3OD unless 

otherwise indicated. Autopol III automatic polarimeter (Rudolph Research Analytical) was 

used to record the optical rotations. MEL-TEMP II (Laboratory Devices Inc., U.S.) capillary 

melting point apparatus was used to record the melting points. Purity of the compounds 

was determined by elemental analysis and was within ±0.4% of the theoretical value 

(≥95% purity). Elemental analyses were performed by Atlantic Microlab, Inc., GA, USA. 

Procedure A. 4'-Bromo-2-nitro-1,1'-biphenyl (2a).  

To a stirring solution of 1-bromo-2-nitrobenzene (2.0 g, 9.9 mmol) and (4-

bromophenyl)boronic acid (2.19 g, 10.89 mmol) in THF (25 mL) were added Pd(PPh3)4 

(0.572 g, 0.50 mmol) followed by 2M K2CO3 (5.53 g in 20 mL water) at room temperature. 

The reaction mixture was stirred at 90 °C for 12 h after which it was cooled and extracted 

with CH2Cl2. The combined organic layer was dried over Na2SO4, filtered, and 
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concentrated in vacuo. The crude material was purified by column chromatography over 

silica gel using hexane:ethyl acetate (9:1) as solvent to give compound 2a (2.7 g, 98%). 

1H NMR (600 MHz, CDCl3): δ 7.88 (d, J = 8.4 Hz, 1H), 7.64-7.61 (m, 1H), 7.59-7.55 (m, 

2H), 7.53-7.50 (m, 1H), 7.42-7.40 (m, 1H), 7.20-7.18 (m, 2H). 

2-Bromo-2'-nitro-1, 1’-biphenyl (2c).  

To a stirring solution of 1-bromo-2-nitrobenzene (2.50 g, 12.37 mmol) and (2-

bromophenyl) boronic acid (2.73 g, 13.61 mmol) in THF (30 mL) were added Pd(PPh3)4 

(0.715 g, 0.61 mmol) followed by 2M K2CO3 (5.53 g in 20 mL water) according to 

procedure A to give compound 2c (2.18 g, 94%). 1H NMR (600 MHz, CDCl3): δ 7.87 (d, 

J = 8.4 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.40 (d, J = 9 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 

7.14 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 7.03 (d, J = 7.2 Hz, 2H). 

Procedure B. 2-Bromo-9H-carbazole (3a).  

Compound 2a and PPh3 were dissolved in 1,2-dichlorobenzene and the resulting 

solution was stirred at 170 °C for 12 h after which it was cooled and extracted with 

CH2Cl2/H2O. The combined organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude material was purified by column chromatography over 

silica gel using hexane:ethyl acetate (9:1) to yield compound 3a (1.57 g, 89%). 1H NMR 

(600 MHz, CDCl3): δ 8.04 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.62-7.58 (m, 2H), 

7.52-7.47 (m, 2H), 7.39 (d, J = 8.4 Hz, 1H). 

4-Bromo-9H-carbazole (3c).  

Compound 2c and PPh3 were reacted in 1,2-dichlorobenzene according  to 

procedure B to yield compound 3c (1.25 g, 87%). 1H NMR (600 MHz, CDCl3): δ 8.81 (d, 
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J = 7.8 Hz, 1H), 7.97 (s, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.35 (t, J 

= 7.8 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.25-7.20 (m, 1H). 

Procedure C. tert-Butyl 2-bromo-9H-carbazole-9-carboxylate (4a).  

To a stirring solution of compound 3a (1.5 g, 6.09 mmol) in THF (20 mL) were 

added (Boc)2O (1.46 g, 6.7 mmol) and DMAP (0.819 g, 6.7 mmol) in THF (20 mL) at room 

temperature. The reaction mixture was stirred at the same temperature for 12 h. The 

crude mixture was evaporated under reduced pressure, followed by extraction with EtOAc 

(3 × 20 mL) in water. The combined organic layer was dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude material was purified by silica gel column 

chromatography (hexane:EtOAc = 19:1) to yield compound 4a (1.78 g, 84%). 1H NMR 

(600 MHz, CDCl3): δ 8.48 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.24 (t, J = 7.8 Hz, 

1H), 7.18 (d, J = 7.8 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H), 6.97 (t, J = 8.10 Hz, 1H), 1.53 (s, 

9H). 

tert-Butyl 3-bromo-9H-carbazole-9-carboxylate (4b).  

3-Bromo-9H-carbazole (3b) (2.0 g, 8.13 mmol) was reacted with (Boc)2O (1.95 g, 

8.94 mmol) and DMAP (1.09 g, 8.94 mmol) in THF (20 mL) according to procedure C. 

The crude material was purified by column chromatography over silica gel using 

hexane:ethyl acetate (19:1) as solvent to give compound 4b (2.8 g, ∼100%). 1H NMR 

(600 MHz, CDCl3): δ 8.27 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 2.4 

Hz, 1H), 7.92 (qd, J = 7.8, 0.6 Hz, 1H), 7.55 (dd, J = 6.6, 2.4 Hz, 1H), 7.49 (td, J = 8.4, 

1.2 Hz, 1H), 7.36 (td, J = 8.4, 1.2 Hz, 1H), 1.76 (s, 9H). 
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tert-Butyl 4-bromo-9H-carbazole-9-carboxylate (4c).  

Compound 3c (1.5 g, 6.09 mmol) was reacted with (Boc)2O (1.46 g, 6.7 mmol) and 

DMAP (0.819 g, 6.7 mmol) in THF (20 mL) according to procedure C. The crude material 

was purified by silica gel column chromatography (hexane:EtOAc = 19:1) to yield 

compound 4c (1.78 g, 84%). 1H NMR (600 MHz, CDCl3): δ 8.53 (s, 1H), 8.26 (d, J = 8.4 

Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.49-7.46 (m, 2H), 7.36 (t, J = 

7.2 Hz, 1H), 1.77 (s, 9H). 

Procedure D. tert-Butyl 2-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)-

9H-carbazole-9-carboxylate (5a).  

To a mixture of compounds 4a (0.8 g, 2.31 mmol), 1-(2-((tert-

butyldimethylsilyl)oxy)-ethyl)piperazine (Das et al. 2015) (1.13 g, 4.62 mmol), BINAP 

(0.144 g, 0.23 mmol) and Cs2CO3 (2.26 g, 6.93 mmol), toluene (15 mL) was added under 

N2 atmosphere. The reaction mixture was degassed by bubbling N2 for 5 min and then 

Pd(OAc)2 (0.039 g, 0.17 mmol) was added quickly. The system was degassed again and 

refluxed for 24 h under inert condition. The reaction mixture was cooled to room 

temperature, filtered through a pad of celite, washed with dichloromethane and 

concentrated in vacuum. The crude residue was purified by column chromatography 

(hexane:EtOAc = 4:1) to afford compound 5a (0.97 g, 82%). 1H NMR (600 MHz, CDCl3): 

δ 8.23 (d, J = 7.8 Hz, 1H), 7.92 (s, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 9.0 Hz, 1H), 

7.35 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 1H), 7.00 (dd, J = 9.0, 1.8 Hz, 1H), 3.82 (t, J 

= 6.6 Hz, 2H), 3.32 (t, J = 4.8 Hz, 4H), 2.74 (t, J = 4.8 Hz, 4H), 2.62 (t, J = 6.6 Hz, 2H), 

1.75 (s, 9H), 0.91 (s, 9H), 0.09 (s, 6H). 
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tert-Butyl 3-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)-9H-carbazole-9-

carboxylate (5b).  

A mixture of compound 4b (1.2 g, 3.47 mmol), 1-(2-((tert-

butyldimethylsilyl)oxy)ethyl)piperazine (1.27 g, 5.20 mmol), Pd(OAc)2 (0.058 g, 0.26 

mmol), BINAP (0.216 g, 0.35 mmol) and Cs2CO3 (3.39 g, 10.4 mmol) in toluene (25 mL) 

was heated at 110 oC for 24 h according to procedure D. The crude material was purified 

by silica gel column chromatography (hexane:EtOAc = 4:1) to give compound 5b (1.4 g, 

79%). 1H NMR (600 MHz, CDCl3): δ 8.27 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 

7.93 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.32 (t, J = 7.8 

Hz, 1H), 7.13 (dd, J = 6.6, 2.4 Hz, 1H), 3.83 (t, J = 6.6 Hz, 2H), 3.28 (t, J = 4.8 Hz, 4H), 

2.77 (t, J = 4.8 Hz, 4H), 2.63 (t, J = 6.6 Hz, 2H), 1.75 (s, 9H), 0.92 (s, 9H), 0.09 (s, 6H). 

tert-Butyl 4-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)-9H-carbazole-9-

carboxylate (5c).  

A mixture of 4c (2.70 g, 7.80 mmol), 1-(2-((tert-butyldimethylsilyl)oxy)-

ethyl)piperazine (3.24 g, 13.25 mmol), Pd(OAc)2 (0.0.13 g, 0.59 mmol), BINAP (0.49 g, 

0.78 mmol) and Cs2CO3 (7.62 g, 23.4 mmol) in toluene (30 mL) was heated at 110°C for 

24 h according to procedure D. The crude residue was purified by column 

chromatography (hexane:EtOAc = 4:1) to afford compound 5c (3.24 g, 82%). 1H NMR 

(600 MHz, CDCl3): δ 8.34 (dd, J = 8.1,4.8 Hz, 2H), 8.08 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 

7.2 Hz, 1H), 7.41-7.36 (m, 2H), 7.04 (d, J = 8.4 Hz, 1H), 3.85 (t, J = 6.6 Hz, 2H), 3.33 (d, 

J = 5.4 Hz, 2H), 2.99 (t, J = 5.4 Hz, 2H), 2.71 (t, J = 6.6 Hz, 4H),  1.75 (s, 9H), 0.91 (s, 

9H), 0.10 (s, 6H). 
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Procedure E. tert-Butyl 2-(4-(2-hydroxyethyl)piperazin-1-yl)-9H-carbazole-9-

carboxylate (6a).  

Into a stirring solution of compound 5a (0.95 g, 1.86 mmol) in THF (10 mL) was 

added n-tetrabutylammonium fluoride (2.8 mL, 2.8 mmol, 1.0 M solution in THF) at 0 °C. 

The reaction mixture was then stirred at room temperature for 2 h. THF was evaporated 

in vacuo, and the residue was diluted with CH2Cl2 (25 mL) and washed with a saturated 

solution of NaHCO3. The water layer was extracted with CH2Cl2 (3 × 50 mL). The 

combined organic layer was washed with brine, dried over Na2SO4, and evaporated under 

reduced pressure. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 9:1) to give compound 6a (0.595 g, 81%). 1H NMR (600 MHz, CDCl3): δ 

8.23 (d, J = 7.8 Hz, 1H), 7.94 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 

7.36 (t, J = 7.2 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.00 (dd, J = 6.6, 1.8 Hz, 1H), 3.68 (t, J 

= 5.4 Hz, 2H), 3.34 (t, J = 4.8 Hz, 4H), 2.73 (t, J = 4.8 Hz, 4H), 2.64 (t, J = 5.4 Hz, 2H), 

1.76 (s, 9H). 

tert-Butyl 3-(4-(2-hydroxyethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (6b). 

Compound 5b (1.2 g, 2.35 mmol) in THF (15 mL) was reacted with n-

tetrabutylammonium fluoride (4.71 mL, 4.71 mmol, 1.0 M solution in THF) according to 

procedure E. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 9:1) to yield compound 6b (0.78 g, 84%). 1H NMR (600 MHz, CDCl3): δ 

8.28 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 2.4 

Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.13 (dd, J = 6.6, 2.4 Hz, 1H), 

3.69 (t, J = 5.4 Hz, 2H), 3.29 (t, J = 4.8 Hz, 4H), 2.76 (t, J = 4.8 Hz, 4H), 2.66 (t, J = 5.4 

Hz, 2H), 1.75 (s, 9H). 
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tert-Butyl 4-(4-(2-hydroxyethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (6c).  

Compound 5c (3.30 g, 6.47 mmol) was reacted with n-tetrabutylammonium 

fluoride (9.70 mL, 9.70 mmol, 1.0 M solution in THF) in THF (30 mL) according to 

procedure E. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 9:1) to give compound 6c (2.01 g, 80%). 1H NMR (600 MHz, CDCl3): δ 

8.27 (d, J = 6.6 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.47 (s, 1H), 

7.43 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 9.0 Hz, 1H), 3.69 (t, J = 5.4 

Hz, 2H), 3.26 (s, 4H), 2.76 (s, 4H), 2.62 (t, J = 5.4 Hz, 2H), 1.73 (s, 9H). 

Procedure F. tert-Butyl 2-(4-(2-oxoethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate 

(7a).  

Into a stirring solution of compound 6a (0.30 g, 0.76 mmol) in CH2Cl2 (6 mL) and 

DMSO (3 mL), was added Et3N (0.74 mL, 5.31 mmol) at 0 °C. The reaction mixture was 

stirred for 5 min followed by addition of SO3.py complex (0.604 g, 3.79 mmol) at 0 °C. Ice 

bath was removed, and the reaction mixture was stirred at room temperature for 2 h. The 

reaction mixture was quenched by addition of water and extracted with CH2Cl2 (3 × 30 

mL). The combined organic layer was dried using Na2SO4, and the solvent was removed 

under reduced pressure. The crude product was purified by silica gel column 

chromatography (hexane:EtOAc = 3:7) to give aldehyde 7a (0.25 g, 84%). The purified 

aldehyde was used immediately for next step. 1H NMR (600 MHz, CDCl3): δ 9.74 (s, 1H), 

8.23 (d, J = 8.4 Hz, 1H), 7.94 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 

7.36 (td, J = 7.2, 1.2 Hz, 1H), 7.29 (td, J = 7.2, 1.2 Hz, 1H), 6.97 (dd, J = 6.6, 1.8 Hz, 1H), 

3.36 (t, J = 4.8 Hz, 4H), 3.24 (t, J = 1.2 Hz, 2H), 2.73 (t, J = 4.8 Hz, 4H), 1.75 (s, 9H). 

tert-Butyl 3-(4-(2-oxoethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (7b).        
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Compound 6b (0.45 g, 1.14 mmol) in CH2Cl2 (10 mL) and DMSO (5 mL), was 

oxidized using SO3.py complex (0.905 g, 5.69 mmol) and Et3N (1.11 mL, 7.96 mmol) 

according to procedure F. The crude product was purified by silica gel column 

chromatography (EtOAc) to yield compound 7b (0.35 g, 78%). 1H NMR (600 MHz, 

CDCl3): δ 9.76 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.8 

Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.12 

(dd, J = 6.6, 2.4 Hz, 1H), 3.31 (t, J = 4.2 Hz, 4H), 3.25 (t, J = 1.2 Hz, 2H), 2.74 (t, J = 4.2 

Hz, 4H), 1.74 (s, 9H).  

tert-Butyl 4-(4-(2-oxoethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (7c).  

Alcohol 6c (0.35 g, 0.88 mmol) was oxidized using SO3.py complex (0.704 g, 4.425 

mmol), DMSO (9 mL) and Et3N (0.86 mL, 6.19 mmol) in CH2Cl2 (6 mL) according to 

procedure F. The crude product was purified by silica gel column chromatography 

(hexane:EtOAc = 3:7) to give aldehyde 7c (0.31 g, 89%). The purified aldehyde was used 

immediately for next step. 1H NMR (600 MHz, CDCl3): δ 9.78 (s, 1H), 8.33 (d, J = 7.8 Hz, 

1H), 8.27 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.44-7.40 

(m, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.06 (dd, J = 7.8, 1.8 Hz, 1H), 3.36-3.34 (m, 4H), 3.06 

(t, J = 11.1 Hz, 2H), 2.73 (d, J = 11.4 Hz, 2H), 2.71 (d, J = 10.2 Hz, 2H), 1.75 (s, 9H). 

Procedure G. tert-Butyl 2-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-

yl)(propyl)amino)-ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (8a).  

Into a stirring solution of racemic N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-

diamine (0.058 g, 0.27 mmol) in CH2Cl2 (7 mL) was added aldehyde 7a (0.12 g, 0.31 

mmol). After the mixture was stirred for 1.5 h, NaBH(OAc)3 (0.13 g, 0.61 mmol) was added 

and the mixture was stirred for another 46 h at room temperature. The reaction mixture 
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was quenched with a saturated solution of NaHCO3 at 0 °C and extracted with CH2Cl2 (3 

× 50 mL). The combined organic layer was dried over Na2SO4, and the solvent was 

removed under reduced pressure. The crude product was purified by silica gel column 

chromatography (CH2Cl2:MeOH = 19:1) to afford compound 8a (0.06 g, 38%). 1H NMR 

(600 MHz, CDCl3): δ 8.23 (d, J = 8.4 Hz, 1H), 7.92 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.81 

(d, J = 8.4 Hz, 1H), 7.35 (td, J = 7.2, 1.2 Hz, 1H), 7.29 (td, J = 7.2, 1.2 Hz, 1H), 7.00 (dd, 

J = 6.0, 2.4 Hz, 1H), 4.77 (bs, 2H), 3.33 (t, J = 4.8 Hz, 4H), 3.07 (m, 1H), 2.78‒2.68 (m, 

8H), 2.60‒2.47 (m, 6H), 2.02‒2.00 (m, 1H), 1.75 (s, 10H), 1.51‒1.47 (m, 2H), 0.90 (t, J = 

7.2 Hz, 3H). 

tert-Butyl 3-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino) 

ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (8b).  

Aldehyde 7b (0.15 g, 0.38 mmol) in CH2Cl2 (10 mL) was reacted with racemic N6-

propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (0.073 g, 0.34 mmol) and 

NaBH(OAc)3 (0.162 g, 0.76 mmol) according to procedure G. Crude product was purified 

by column chromatography (EtOAc:MeOH = 9:1) to afford compound 8b (0.065 g, 32%). 

1H NMR (400 MHz, CDCl3): δ 8.27 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 9.2 Hz, 1H), 7.93 (d, 

J = 7.6 Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 

7.12 (dd, J = 7.2, 2.4 Hz, 1H), 5.12 (bs, 2H), 3.28 (t, J = 4.8 Hz, 4H), 3.07‒3.02 (m, 1H), 

2.78‒2.67 (m, 8H), 2.58‒2.45 (m, 6H), 2.00‒1.98 (m, 1H), 1.74 (s, 10H), 1.52‒1.46 (m, 

2H), 0.90 (t, J = 7.2 Hz, 3H). 

tert-Butyl 4-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl)amino) 

ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (8c).  
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Aldehyde 7c (0.15 g, 0.38 mmol) was reacted with racemic N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine (0.073 g, 0.34 mmol) and NaBH(OAc)3 (0.162 g, 

0.76 mmol) in CH2Cl2 (10 mL) according to procedure G. The crude product was purified 

by silica gel column chromatography (CH2Cl2:MeOH = 19:1) to afford compound 8c (0.91 

g, 41%). 1H NMR (600 MHz, CDCl3): δ 8.23 (d, J = 6.6 Hz, 1H), 8.28 (d, J = 6.6 Hz, 1H), 

8.06 (d, J = 6.6 Hz, 1H), 7.43 (d, J = 5.4 Hz, 1H), 7.37 (d, J = 5.4 Hz, 2H), 7.02 (d, J = 6.0 

Hz, 1H), 5.03 (s, 2H), 3.10-3.05 (m, 3H), 3.07-2.98 (m, 2H), 2.76‒2.69 (m, 4H), 2.62‒2.60 

(m, 8H), 2.01‒2.00 (m, 1H), 1.73 (s, 10H), 1.50‒1.46 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). 

(S)-tert-Butyl 2-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl) 

amino)ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (9a).  

Aldehyde 7a (0.125 g, 0.32 mmol) was reacted with (-)-pramipexole (0.06 g, 0.29 

mmol) and NaBH(OAc)3 (0.135 g, 0.64 mmol) in CH2Cl2 (8 mL) according to procedure 

G. The crude product was purified by silica gel column chromatography (CH2Cl2:MeOH = 

19:1) to afford compound 9a (0.067 g, 40%). 1H NMR (600 MHz, CDCl3): δ 8.23 (d, J = 

8.4 Hz, 1H), 7.92 (s, 1H), 7.85 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.35 (td, J = 

7.2, 1.2 Hz, 1H), 7.29 (td, J = 7.2, 1.2 Hz, 1H), 7.00 (dd, J = 6.6, 2.4 Hz, 1H), 4.76 (bs, 

2H), 3.33 (t, J = 4.8 Hz, 4H), 3.07 (m, 1H), 2.79‒2.68 (m, 8H), 2.61‒2.48 (m, 6H), 2.02‒

2.00 (m, 1H), 1.75 (s, 10H), 1.51‒1.48 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); [α]D25= -44.0 

(c=1.0 in CH2Cl2). 

(S)-tert-Butyl 3-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl) 

amino)ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (9b).  

Aldehyde 7b (0.30 g, 0.76 mmol) was reacted with (-)-pramipexole (0.145 g, 0.69 

mmol) and NaBH(OAc)3 (0.323 g, 1.52 mmol) in CH2Cl2 (15 mL) according to procedure 
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G. The crude product was purified by silica gel column chromatography (EtOAc:MeOH = 

9:1) to afford compound 9b (0.158 g, 39%). 1H NMR (600 MHz, CDCl3): δ 8.27 (d, J = 7.2 

Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.43 

(t, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.12 (dd, J = 6.6, 2.4 Hz, 1H), 5.21 (bs, 2H), 

3.28 (t, J = 4.8 Hz, 4H), 3.07‒3.02 (m, 1H), 2.78‒2.66 (m, 8H), 2.59‒2.46 (m, 6H), 2.01‒

1.99 (m, 1H), 1.74 (s, 10H), 1.52‒1.46 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). 

(S)-tert-Butyl 4-(4-(2-((2-amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)(propyl) 

amino)ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (9c).  

Aldehyde 7c (0.150 g, 0.38 mmol) was reacted with (-)-pramipexole (0.73 g, 0.54 

mmol) and NaBH(OAc)3 (0.162 g, 0.76 mmol) in CH2Cl2 (10 mL) according to procedure 

G. The crude product was purified by silica gel column chromatography (CH2Cl2:MeOH = 

19:1) to afford compound 9c (0.097 g, 43%). 1H NMR (600 MHz, CDCl3): δ 8.32 (d, J = 

7.2 Hz, 1H), 8.28 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 7.2 Hz, 1H), 

7.40-7.35 (m, 2H), 7.30 (d, J = 7.2 Hz, 1H), 4.83 (bs, 2H), 3.33 (d, J = 8.4 Hz, 2H), 3.06 

(m, 3H), 2.99 (m, 2H), 2.76‒2.70 (m, 4H), 2.60 (m, 7H), 1.74 (s, 10H), 1.51‒1.48 (m, 2H), 

0.90 (t, J = 6.6 Hz, 3H); [α]D25= -27.20 (c=1.0 in CH2Cl2). 

Procedure H. N6-(2-(4-(9H-carbazol-2-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo-[d]thiazole-2,6-diamine (10a) (D-652).  

To a stirred solution of 8a (0.055 g, 0.09 mmol) in CH2Cl2 (3 mL) at 0 oC, 

trifluoroacetic acid (3 mL) was added slowly and the reaction mixture was stirred for 3 h 

at room temperature. Unreacted TFA and solvent were removed under reduced pressure 

and the obtained TFA salt was washed with ether for several times followed by drying to 

yield 10a (0.079 g, 90%). 1H NMR (600 MHz, CD3OD): δ 7.99 (d, J = 8.4 Hz, 1H), 7.96 
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(d, J = 7.8 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.25 (s, 1H), 7.13 (t, 

J = 7.2 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 3.84 (m, 1H), 3.64‒3.55 (m, 5H), 3.48-3.42 (m, 

3H), 3.36 (s, 4H), 3.23-3.14 (m, 2H), 3.01-2.99 (m, 1H), 2.84-2.79 (m, 1H), 2.71‒2.65 (m, 

2H), 2.32-2.31 (m, 1H), 2.02-1.95 (m, 1H), 1.83‒1.79 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); 

13C NMR (150 MHz, CD3OD): δ 170.28, 160.68, 145.32, 140.57, 132.69, 125.56, 124.53, 

122.50, 121.20, 120.14, 119.84, 119.33, 118.79, 118.29, 117.08, 115.15, 111.37, 110.77, 

109.73, 59.75, 52.49, 51.56, 50.08, 22.29, 21.88, 21.39, 18.01, 10.19; Anal. Calcd for 

C28H36N6S.4CF3COOH: C, 45.77; H, 4.27; N, 8.90. Found: C, 45.71; H, 4.64; N, 8.87.  

N6-(2-(4-(9H-carbazol-3-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo 

[d]thiazole-2,6-diamine (10b) (D-627).  

Compound 8b (0.05 g, 0.09 mmol) in CH2Cl2 (2 mL) at 0 oC, was treated with 

trifluoroacetic acid (2 mL) according to procedure H to obtain the TFA salt of compound 

10b (0.052 g, 84%). 1H NMR (400 MHz, CD3OD): δ 8.01 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 

1.6 Hz, 1H), 7.41-7.36 (m, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.16-7.14 (m, 1H), 7.11 (t, J = 7.2 

Hz, 1H), 3.34 (s, 1H), 3.19 (s, 4H), 2.98‒2.91 (m, 2H), 2.80-2.51 (m, 12H), 2.07‒2.04 (m, 

1H), 1.81-1.77 (m, 1H), 1.63‒1.53 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, 

CD3OD): δ 168.63, 144.25, 143.69, 143.37, 140.69, 135.84, 125.07, 123.21, 122.92, 

119.50, 118.21, 118.00, 113.45, 110.87, 110.41, 107.90, 58.85, 55.41, 53.24, 53.12, 

51.07, 25.37, 24.70, 23.79, 20.35, 10.43; Anal. Calcd for C28H36N6S.2CF3COOH: C, 

53.62; H, 5.34; N, 11.73. Found: C, 53.64; H, 5.83; N, 11.34.  

N6-(2-(4-(9H-carbazol-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo 

[d]thiazole-2,6-diamine (10c) (D-658).  



www.manaraa.com

 

 

95 

Compound 8c (0.082 g, 0.14 mmol) was treated with trifluoroacetic acid (3 mL) in 

CH2Cl2 (3 mL) according to procedure H to furnish the TFA salt of 10c (0.091g, 90%). 1H 

NMR (600 MHz, CD3OD): δ 8.08 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 

7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 

6.82 (d, J = 7.8 Hz, 1H), 3.94‒3.89 (m, 1H), 3.83 (d, J = 7.2 Hz, 2H), 3.77-3.59 (m, 8H), 

3.29 (d, J = 1.2 Hz, 1H), 3.24-3.20 (m, 3H), 3.06-3.04 (m, 1H), 2.92-2.88 (m, 1H), 2.78‒

2.71 (m, 2H), 2.37-2.36 (m, 1H), 2.11-2.04 (m, 1H), 1.86‒1.82 (m, 2H), 1.04 (t, J = 7.2 

Hz, 3H); 13C NMR (150 MHz, CD3OD): δ 170.32, 161.19, 146.42, 141.50, 139.78, 132.81, 

125.91, 124.74, 121.78, 121.34, 118.62, 115.64, 111.66, 110.23, 107.39, 59.17, 53.36, 

53.25, 52.80, 50.81, 48.60, 48.01, 44.95, 22.51, 22.03, 21.49, 18.34, 9.79; Anal. Calcd 

for C28H36N6S, 3CF3COOH, CH3OH, H2O: C, 47.73; H, 5.15; N, 9.54. Found: C, 47.63; H, 

4.67; N, 9.23.  

(S)-N6-(2-(4-(9H-carbazol-2-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydro-

benzo[d]thiazole-2,6-diamine (11a) (D-651).  

Compound 9a (0.065 g, 0.11 mmol) was treated with trifluoroacetic acid (3 mL) in 

CH2Cl2 (3 mL) according to procedure H to furnish the TFA salt of 11a (0.085 g, 93%). 1H 

NMR (600 MHz, CD3OD): δ 7.99 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.42 (d, J 

= 7.8 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.26 (s, 1H), 7.13 (t, J = 7.2 Hz, 1H), 7.04 (d, J = 

8.4 Hz, 1H), 3.86 (m, 1H), 3.65‒3.56 (m, 5H), 3.49-3.42 (m, 3H), 3.37 (s, 4H), 3.25-3.16 

(m, 2H), 3.02-3.00 (m, 1H), 2.85-2.81 (m, 1H), 2.73‒2.66 (m, 2H), 2.34-2.32 (m, 1H), 

2.04-1.97 (m, 1H), 1.83‒1.80 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, 

CD3OD): δ 170.29, 160.41, 145.25, 140.58, 132.67, 125.55, 124.55, 122.49, 121.21, 

120.15, 119.82, 119.32, 118.82, 118.24, 116.97, 115.06, 111.39, 110.76, 109.70, 59.75, 
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52.50, 51.55, 50.17, 22.31, 21.89, 21.40, 17.98, 10.18; [α]D25= -24.8 (c=1.0 in CH3OH); 

Anal. Calcd for C28H36N6S.3CF3COOH.2H2O: C, 47.11; H, 5.00; N, 9.70. Found: C, 47.63; 

H, 4.67; N, 9.23.  

(S)-N6-(2-(4-(9H-carbazol-3-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydro-

benzo[d]thiazole-2,6-diamine (11b) (D-636).  

Compound 9b (0.15 g, 0.25 mmol) was treated with trifluoroacetic acid (8 mL) in 

CH2Cl2 (8 mL) according to procedure H to furnish the TFA salt of 11b (0.20 g, 96%). 1H 

NMR (600 MHz, CD3OD): δ 8.27 (s, 1H), 8.11 (d, J = 7.2 Hz, 1H), 7.59-7.54 (m, 2H), 7.49 

(d, J = 8.4 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 3.96 (m, 1H), 3.80 (s, 

4H), 3.57‒3.45 (m, 2H), 3.34-3.27 (m, 2H), 3.20-3.10 (m, 7H), 2.97-2.92 (m, 1H), 2.83-

2.75 (m, 2H), 2.44‒2.42 (m, 1H), 2.17-2.10 (m, 1H), 1.90‒1.84 (m, 2H), 1.07 (t, J = 7.2 

Hz, 3H); 13C NMR (150 MHz, CD3OD): δ 170.35, 160.54, 141.04, 139.17, 135.08, 132.80, 

126.39, 123.44, 122.29, 119.95, 119.05, 117.60, 111.67, 111.55, 111.45, 110.90, 59.31, 

54.18, 53.61, 51.21, 50.61, 22.42, 22.09, 21.50, 17.98, 9.82; [α]D25= -17.4 (c=1.0 in 

CH3OH); Anal. Calcd for C28H36N6S.3CF3COOH.H2O: C, 48.11; H, 4.87; N, 9.90. Found: 

C, 48.25; H, 4.99; N, 9.58.  

(S)-N6-(2-(4-(9H-carbazol-4-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydro-

benzo[d]thiazole-2,6-diamine (11c) (D-657).  

Compound 9c (0.83 g, 0.14 mmol) was treated with trifluoroacetic acid (7 mL) in 

CH2Cl2 (7 mL) according to procedure H to furnish the TFA salt of 11c (0.085 g, 93%). 1H 

NMR (600 MHz, CD3OD): δ 8.07 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.36 (d, J 

= 7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.22 (d, J = 7.8 Hz,, 1H), 7.19 (t, J = 7.2 Hz, 1H), 

6.81 (d, J = 8.4 Hz, 1H), 3.90 (s, 1H) 3.84 (d, J = 6.6 Hz, 2H), 3.78‒3.71 (m, 4H), 3.56-
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3.43 (m, 4H), 3.29 (s, 2H), 3.26-3.21 (m, 3H), 3.06-3.04 (m, 1H), 2.92-2.88 (m, 1H), 2.78‒

2.71 (m, 2H), 2.36 (bs, 1H), 2.09-2.04 (m, 1H), 1.86‒1.82 (m, 2H), 1.04 (t, J = 7.2 Hz, 

3H); 13C NMR (150 MHz, CD3OD): δ 170.32, 161.06, 146.42, 139.77, 132.80, 126.38, 

124.29, 122.26, 121.30, 119.075, 118.18, 115.62, 111.61, 110.74, 109.72, 59.72, 58.72, 

53.27, 52.76, 50.70, 44.91, 22.99, 22.34, 21.44, 18.30, 10.07, 9.46; [α]D25= -25.0 (c=1.0 

in CH3OH); Anal. Calcd for C28H36N6S.3CF3COOH: C, 49.16; H, 4.73; N, 10.12. Found: 

C, 48.93; H, 4.84; N, 9.77.  

tert-Butyl 2-(4-(2-((5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino) 

ethyl)-piperazin-1-yl)-9H-carbazole-9-carboxylate (12a).  

Compound 7a (0.10 g, 0.25 mmol) was reacted with (±)-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (0.056 g, 0.25 mmol) and NaBH(OAc)3 (0.108 

g, 0.51 mmol) in CH2Cl2 (7 mL) according to procedure G. The crude product was purified 

by silica gel column chromatography (hexane:EtOAc = 1:3) to afford compound 12a 

(0.115 g, 77%). 1H NMR (600 MHz, CDCl3): δ 8.23 (d, J = 7.8 Hz, 1H), 7.91 (s,1H), 7.83 

(d, J = 7.8 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.2, Hz, 1H), 7.28 (t, J = 7.2 Hz, 

1H), 7.08 (t, J = 7.8 Hz, 1H), 6.98 (dd, J = 6.6, 1.8 Hz, 1H), 6.72 (d, J = 7.2, Hz, 1H), 6.64 

(d, J = 7.8, Hz, 1H), 3.79 (s, 3H), 3.32 (t, J = 4.8 Hz, 4H), 3.02‒2.93 (m, 2H), 2.88-2.85 

(m, 1H), 2.79‒2.75 (m, 3H), 2.70 (t, J = 4.8 Hz, 4H), 2.56‒2.50 (m, 5H), 2.09‒2.06 (m, 

1H), 1.74 (s, 9H), 1.62‒1.55 (m, 1H), 1.53-1.47 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). 

tert-Butyl 3-(4-(2-((5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino) 

ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (12b).  

Compound 7b (0.170 g, 0.43 mmol) was reacted with (±)-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (0.095 g, 0.43 mmol) and NaBH(OAc)3 (0.183 
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g, 0.86 mmol) in CH2Cl2 (10 mL) according to procedure G. The crude product was 

purified by silica gel column chromatography with EtOAc to afford compound 12b (0.11 

g, 43%). 1H NMR (600 MHz, CDCl3): δ 8.27 (d, J = 7.8 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 

7.92 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 2.4 Hz, 1H), 7.43 (t, J = 7.2, Hz, 1H), 7.31 (t, J = 7.2 

Hz, 1H), 7.12 (dd, J = 6.6, 2.4 Hz, 1H), 7.08 (t, J = 8.4 Hz, 1H), 6.72 (d, J = 7.2, Hz, 1H), 

6.64 (d, J = 8.4 Hz, 1H), 3.79 (s, 3H), 3.27 (t, J = 4.8 Hz, 4H), 3.03‒2.98 (m, 2H), 2.90-

2.87 (m, 1H), 2.81‒2.77 (m, 3H), 2.73 (t, J = 4.8 Hz, 4H), 2.59‒2.51 (m, 5H), 2.11‒2.08 

(m, 1H), 1.74 (s, 9H), 1.63‒1.57 (m, 1H), 1.55-1.49 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). 

tert-Butyl 4-(4-(2-((5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino) 

ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (12c).  

Compound 7c (0.10 g, 0.25 mmol) was reacted with (±)-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (0.055 g, 0.25 mmol) and NaBH(OAc)3 (0.108 

g, 0.50 mmol) in CH2Cl2 (8 mL) according to procedure G. The crude product was purified 

by silica gel column chromatography (hexane:EtOAc = 1:3) to afford compound 12c 

(0.112 g, 74%). 1H NMR (600 MHz, CDCl3): δ 8.23 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4, 

Hz, 1H), 8.09 (d, J = 7.2 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.39 (m, 2H), 7.13 (t, J = 7.8 

Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 6.70 (q, J = 7.8 Hz, 2H), 3.92 (bs, 2H), 3.79 (s, 3H), 

3.58‒3.48 (m, 4H), 2.29  (m, 2H), 3.06- 3.04 (m, 5H), 2.62, (m, 1H), 2.37 (bs, 1H), 2.09‒

2.06 (m, 1H), 1.74 (s, 9H), 1.62‒1.55 (m, 1H), 1.53-1.47 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H). 

(S)-tert-Butyl 2-(4-(2-((5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl) 

amino)ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (13a).  

Compound 7a (0.10 g, 0.25 mmol) was reacted with (-)-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (0.056 g, 0.25 mmol) and NaBH(OAc)3 (0.108 
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g, 0.51 mmol) in CH2Cl2 (7 mL) according to procedure G. The crude product was purified 

by silica gel column chromatography (hexane:EtOAc = 1:3) to afford compound 13a (0.11 

g, 74%). 1H NMR (600 MHz, CDCl3): δ 8.23 (d, J = 8.4 Hz, 1H), 7.91 (s,1H), 7.82 (d, J = 

7.8 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.2, Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 

7.08 (t, J = 7.8 Hz, 1H), 6.97 (dd, J = 6.6, 1.8 Hz, 1H), 6.71 (d, J = 7.2, Hz, 1H), 6.63 (d, 

J = 7.8, Hz, 1H), 3.78 (s, 3H), 3.32 (t, J = 4.8 Hz, 4H), 3.02‒2.94 (m, 2H), 2.88-2.85 (m, 

1H), 2.79‒2.74 (m, 3H), 2.70 (t, J = 4.8 Hz, 4H), 2.56‒2.50 (m, 5H), 2.08‒2.06 (m, 1H), 

1.74 (s, 9H), 1.61‒1.54 (m, 1H), 1.52-1.47 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); [α]D25= -28.6 

(c=1.0 in CH2Cl2). 

(S)- tert-Butyl 3-(4-(2-((5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino) 

ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (13b).  

Compound 7b (0.140 g, 0.456 mmol) was reacted with (-)-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (0.070 g, 0.32 mmol) and NaBH(OAc)3 (0.151 

g, 0.71 mmol) in CH2Cl2 (10 mL) according to procedure G. The crude product was 

purified by silica gel column chromatography with EtOAc to afford compound 13b (0.07 

g, 33%). 1H NMR (600 MHz, CDCl3): δ 8.18 (d, J = 6 Hz, 1H), 8.09 (m, 1H),  7.83 (d, J = 

7.2 Hz, 1H), 7.38-7.32 (m, 2H), 7.23 (q, J = 9.6, 7.5 Hz, 1H), 7.03 (d, J = 9 Hz, 1H), 6.99 

(t, J = 7.8 Hz, 1H), 6.63 (d, J = 6.6, Hz, 1H), 6.55 (d, J = 7.8, Hz, 1H), 3.70 (s, 3H), 3.18 

(t, J = 4.2 Hz, 4H), 3.27‒3.26 (m, 1H), 3.12-3.10 (m, 2H), 2.93‒2.90 (m, 2H),  2.81‒2.78 

(m, 1H), 2.69-2.64 (m, 5H), 2.48‒2.43 (m, 4H), 2.03‒2.00 (m, 1H), 1.65 (s, 9H), 1.54‒

1.47 (m, 1H), 1.45-1.37 (m, 2H), 0.82 (t, J = 7.2 Hz, 3H). 

(S)-tert-Butyl 4-(4-(2-((5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl) 

amino)ethyl)piperazin-1-yl)-9H-carbazole-9-carboxylate (13c).  
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Compound 7c (0.10 g, 0.25 mmol) was reacted with (-)-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (0.055 g, 0.25 mmol) and NaBH(OAc)3 (0.108 

g, 0.50 mmol) in CH2Cl2 (8 mL) according to procedure G. The crude product was purified 

by silica gel column chromatography (hexane:EtOAc = 1:3) to afford compound 13c 

(0.124 g, 82%). 1H NMR (600 MHz, CDCl3): δ 8.35-8.30 (m, 2H), 7.07 (d, J = 7.8 Hz, 1H), 

7.44-7.41 (m, 1H), 7.41-7.39 (m,  2H), 7.08 (d, J = 7.8 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 

6.73 (d, J = 7.2, Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 3.79 (s, 3H), 3.53-3.48 (m, 4H), 3.29 

(m, 2H), 3.16-3.04 (m, 5H), 2.67-2.60 (m, 1H), 2.37 (bs, 1H), 2.03‒2.01 (m, 2H), 1.85‒

1.84 (m, 3H), 1.75 (s, 9H), 1.26-1.24 (m, 3H), 0.92 (t, J = 7.2 Hz, 3H); [α]D25= -20.3 (c=1.0 

in CH2Cl2). 

Procedure I. 6-((2-(4-(9H-carbazol-2-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-

tetrahydronaphthalen-1-ol (14a) (D-654).  

A mixture of compound 12a (0.10 g, 0.17 mmol) and 48% aqueous HBr (8 mL) 

was refluxed at 130 °C for 4 h. The reaction mixture was evaporated to dryness, washed 

with ether followed by vacuo drying to yield HBr salt of 14a (0.095 g, 78%). 1H NMR (600 

MHz, CD3OD): δ 8.11 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.67-7.62 (m, 1H), 

7.46 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.34-7.29 (m, 1H), 7.17 (t, J = 7.2 Hz, 

1H), 6.96 (t, J = 7.8 Hz, 1H), 6.67 (d, J = 7.8, Hz, 1H), 6.62 (d, J = 7.8, Hz, 1H), 3.99-3.86 

(m, 5H), 3.84‒3.72 (m, 5H), 3.68-3.63 (m, 2H), 3.39 (m, 1H), 3.33-3.29 (m, 2H), 3.16-3.08 

(m, 2H), 2.71-2.66 (m, 1H), 2.63 (m, 1H), 2.49-2.47 (m, 1H), 2.00‒1.93 (m, 3H), 1.07 (t, 

J = 7.2 Hz, 3H); 13C NMR (150 MHz, CD3OD): δ 154.74, 140.88, 140.12, 133.27, 129.28, 

126.63, 125.85, 122.06, 121.59, 121.12, 120.99, 119.93, 119.78, 119.11, 117.61, 112.08, 

110.61, 110.26, 61.26, 52.93, 51.47, 50.73, 50.47, 50.32, 45.16, 29.29, 23.55, 22.35, 
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18.26, 9.92, 8.31; Anal. Calcd for C31H38N4O.3HBr: C, 51.33; H, 5.70; N, 7.72. Found: C, 

51.50; H, 5.92; N, 7.46.  

6-((2-(4-(9H-carbazol-3-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetrahydro-

naphthalen-1-ol (14b) (D-650).  

A mixture of compound 12b (0.08 g, 0.13 mmol) and 48% aqueous HBr (7 mL) 

was reflexed according to procedure I to yield HBr salt of 14b (0.095 g, 98%). 1H NMR 

(600 MHz, CD3OD): δ 8.58 (s, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.61 

(d, J = 9.0 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.2 Hz, 

1H), 6.94 (t, J = 7.8 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 6.61 (d, J = 7.8, Hz, 1H), 4.30 (s, 

4H), 4.11-4.04 (m, 6H), 3.93‒3.89 (m, 2H), 3.78 (s, 1H), 3.46-3.39 (m, 1H), 3.33-3.29 (m, 

2H), 3.22-3.16 (m, 1H), 3.09-3.05 (m, 1H), 2.72-2.69 (m, 1H), 2.52-2.47 (m, 1H), 2.02‒

1.94 (m, 3H), 1.07 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, CD3OD): δ 154.67, 141.05, 

139.88, 133.32, 132.51, 127.22, 126.31, 123.45, 122.11, 121.60, 120.77, 120.15, 119.76, 

117.91, 116.92, 112.40, 112.24, 111.96, 111.54, 111.40, 110.53, 60.95, 53.09, 50.47, 

49.91, 29.34, 22.81, 22.37, 18.30, 10.26, 9.73; Anal. Calcd for C31H38N4O.3HBr.2H2O: C, 

48.90; H, 5.96; N, 7.36. Found: C, 49.30; H, 5.86; N, 7.24.  

6-((2-(4-(9H-carbazol-4-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetrahydro-

naphthalen-1-ol (14c) (D-655).  

Compound 12c (0.11 g, 0.18 mmol) was refluxed with 48% aqueous HBr (8 mL) 

according to procedure I to yield HBr salt of 14c (0.097 g, 78%). 1H NMR (600 MHz, 

CD3OD): δ 8.11 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.46-7.43 (m, 1H), 7.37-7.32 

(m, 1H), 7.31-7.27 (m, 1H), 7.25-7.19 (m, 1H), 6.95 (t, J = 7.8 Hz, 1H), 6.87 (d, J = 7.8 

Hz, 1H), 6.79 (d, J = 6.6, Hz, 1H), 6.61 (d, J = 7.8, Hz, 1H), 4.02 (s, 3H), 3.90‒3.85 (m, 
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5H), 3.58-3.57 (m, 3H), 3.39 (m, 2H), 3.33-3.29 (m, 2H), 3.29-3.17 (m, 2H), 3.11-3.08 (m, 

1H), 2.72-2.70 (m, 1H), 2.48 (m, 1H), 1.99‒1.94 (m, 3H), 1.07 (t, J = 7.2 Hz, 3H); 13C 

NMR (150 MHz, CD3OD): δ 154.71, 141.47, 139.70, 133.20, 126.61, 125.85, 124.74, 

121.97, 121.81, 121.58, 121.25, 119.96, 118.76, 118.66, 115.57, 112.07, 110.24, 

110.21,107.23 61.40, 52.89, 50.25, 48.57, 47.09, 45.57, 43.81, 29.23, 23.57, 22.30, 

18.45, 9.91; Anal. Calcd for C31H38N4O.3HBr: C, 51.33; H, 5.70; N, 7.72. Found: C, 51.07; 

H, 5.91; N, 8.17.  

(S)-6-((2-(4-(9H-carbazol-2-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-

tetrahydronaphthalen-1-ol (15a) (D-653).  

Compound 13a (0.10 g, 0.17 mmol) was refluxed with 48% aqueous HBr (8 mL) 

according to procedure I to yield HBr salt of 15a (0.10 g, 82%). 1H NMR (600 MHz, 

CD3OD): δ 8.11 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.62 (m, 1H), 7.46 (d, J = 

7.8 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.34-7.28 (m, 1H), 7.17 (t, J = 7.2 Hz, 1H), 6.96 (t, J 

= 7.8 Hz, 1H), 6.68 (d, J = 7.8, Hz, 1H), 6.62 (d, J = 7.8, Hz, 1H), 3.99 (s, 3H), 3.93-3.85 

(m, 2H), 3.82‒3.63 (m, 7H), 3.39 (m, 1H), 3.33-3.29 (m, 2H), 3.17-3.08 (m, 2H), 2.70 (m, 

1H), 2.63-2.62 (m, 1H), 2.49-2.47 (m, 1H), 2.01‒1.94 (m, 3H), 1.07 (t, J = 7.2 Hz, 3H); 

13C NMR (150 MHz, CD3OD): δ 154.73, 140.86, 140.14, 133.28, 129.27, 126.62, 125.82, 

122.08, 121.60, 121.09, 120.97, 119.93, 119.76, 119.10, 117.58, 112.08, 110.60, 110.26, 

72.29, 61.27, 52.94, 51.83, 51.45, 50.78, 50.49, 41.61, 29.31, 23.48, 22.35, 18.26, 9.92, 

8.31; [α]D25= -21.5 (c=1.0 in CH3OH); Anal. Calcd for C31H38N4O.3HBr: C, 51.33; H, 5.70; 

N, 7.72. Found: C, 51.44; H, 5.93; N, 7.47.  

(S)-6-((2-(4-(9H-carbazol-3-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetra-

hydronaphthalen-1-ol (15b) (D-659).  
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Compound 13b (0.07 g, 0.12 mmol) was refluxed with 48% aqueous HBr (7 mL) 

according to procedure I to yield HBr salt of 15b (0.085 g, 97%). 1H NMR (600 MHz, 

CD3OD): δ 8.58 (s, 1H), 8.15 (q, J = 7.8 Hz, 2H), 7.76 (d, J = 6.6 Hz, 1H),  7.61 (d, J = 

8.4 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.43 (q, J = 7.8 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 

6.94 (t, J = 7.2 Hz, 1H), 6.66 (d, J = 7.2 Hz, 1H), 6.61 (d, J = 7.8, Hz, 1H), 4.17 (s, 4H), 

3.91-3.85 (m, 6H), 3.87‒3.85 (m, 2H), 3.57 (s, 1H), 3.50-3.49 (m, 1H), 3.32-3.28 (m, 2H), 

3.17-3.14 (m, 1H), 3.08-3.05 (m, 1H), 2.69-2.67 (m, 1H), 2.51-2.46 (m, 1H), 1.96‒1.93 

(m, 3H), 1.48 (t, J = 6.0 Hz, 3H); 13C NMR (150 MHz, CD3OD): δ 157.19, 151.08, 147.936, 

147.513.32, 138.93, 137.85, 133.55, 132.78, 129.08,127.16, 126.92, 122.87, 122.74, 

121.64, 119.43, 118.42, 117.40, 107.78, 106.90, 106.54, 57.16, 55.21, 51.85, 50.41, 

48.10, 40.131, 29.71, 25.60, 23.87, 22.08, 11.92; [α]D25= -22.2 (c=1.0 in CH3OH); Anal. 

Calcd for C31H38N4O.4HBr: C, 46.18; H, 5.25; N, 6.95. Found: C, 46.13; H, 5.66; N, 7.59.  

(S)-6-((2-(4-(9H-carbazol-4-yl)piperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetra-

hydronaphthalen-1-ol (15c) (D-656).  

Compound 13c (0.112 g, 0.18 mmol) was refluxed with 48% aqueous HBr (9 mL) 

according to procedure I to yield HBr salt of 15c (0.10 g, 82%). 1H NMR (600 MHz, 

CD3OD): δ 8.09 (d, J = 7.2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.26 

(dd, J = 4.8, 2.4 Hz, 1H), 7.20 (d, J = 8.4 Hz, 2H), 6.92 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.2 

Hz, 1H), 6.65 (d, J = 7.2 Hz, 1H), 6.62 (d, J = 7.8, Hz, 1H), 4.02 (s, 3H), 3.90-3.84 (m, 

6H), 3.59‒3.56 (m, 2H), 3.40 (m, 2H), 3.30-3.28 (m, 2H), 3.19-3.14 (m, 1H), 3.06-3.05 

(m, 1H), 2.71-2.68 (m, 1H), 2.47 (bs, 1H), 1.96‒1.92 (m, 3H), 1.05 (t, J = 7.2 Hz, 3H); 13C 

NMR (150 MHz, CD3OD): δ 154.69, 141.41, 139.73, 133.24, 127.24, 125.30, 124.28, 

122.56, 121.57, 121.21,120.28, 119.63, 119.28, 118.33, 115.52, 112.43, 111.75, 110.77, 
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109.71, 107.68, 61.27, 52.94, 51.83, 60.95, 52.82, 50.31, 44.47, 43.68, 22.53, 18.97, 

9.92, ; [α]D25= -17.8 (c=1.0 in CH3OH); Anal. Calcd for ) C31H38N4O.2HBr. CH2Cl2: C, 

52.69; H, 5.80; N, 7.68. Found: C, 52.23; H, 6.18; N, 7.96.  

9-(2-bromoethyl)-9H-carbazole (16).  

A suspension of carbazole (1.0 g, 5.98 mmol), K2CO3 (1.82 g, 13.16 mmol), 

tetrabutylammonium bromide (0.039 g, 0.12 mmol) and KOH (2.25 g, 40.07 mmol) in 

dibromoethane (10 mL, 119.61 mmol) was stirred at 50 °C under N2 overnight. The 

reaction mixture was filtered off and diluted with CH2Cl2. The organic layer was washed 

with water, dried over sodium sulfate, filtered and concentrated.  The crude product was 

purified by silica gel column chromatography with petroleum ether to afford compound 16 

(0.52 g, 32%). 1H NMR (400 MHz, CDCl3): δ 8.10 (d, J = 7.6 Hz, 2H), 7.51-7.42 (m, 4H), 

7.29-7.25 (m, 2H), 4.71 (t, J = 7.2 Hz, 2H), 3.68 (t, J = 7.2 Hz, 2H).    

9-(2-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)ethyl)-9H-carbazole (17).   

A mixture of compound 16 (0.7 g, 2.55 mmol), 1-(2-((tert-butyldimethylsilyl)-

oxy)ethyl)piperazine (0.75 g, 3.06 mmol), and K2CO3 (1.06 g, 7.66 mmol) in acetonitrile 

(20 mL) was refluxed for 24 h under inert condition. The reaction mixture was cooled to 

room temperature, filtered, washed with EtOAc and concentrated in vacuo. The crude 

material was purified by silica gel column chromatography (hexane:EtOAc = 3:2) to give 

compound 17 (0.81 g, 73%). 1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 7.2 Hz, 2H), 7.49-

7.41 (m, 4H), 7.25-7.21 (m, 2H), 4.45 (t, J = 7.2 Hz, 2H), 3.76 (t, J = 6.8 Hz, 2H), 2.76 (t, 

J = 7.2 Hz, 2H), 2.68-2.57 (m, 6H), 2.54 (t, J = 6.4 Hz, 4H), 0.90 (s, 9H), 0.06 (s, 6H). 

2-(4-(2-(9H-carbazol-9-yl)ethyl)piperazin-1-yl)ethanol (18).  
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Compound 17 (0.875 g, 2.0 mmol) was treated with n-tetrabutylammonium fluoride 

(4.0 mL, 4.0 mmol, 1.0 M solution in THF) in THF (12 mL) according to procedure E. The 

crude product was purified by silica gel column chromatography (EtOAc:MeOH = 5:1) to 

give compound 18 (0.525 g, 81%). 1H NMR (400 MHz, CDCl3): δ 8.09 (d, J = 7.2 Hz, 2H), 

7.48-7.41 (m, 4H), 7.25-7.21 (m, 2H), 4.44 (t, J = 7.2 Hz, 2H), 3.62 (t, J = 5.4 Hz, 2H), 

2.82-2.76 (m, 4H), 2.61-2.55 (m, 8H). 

2-(4-(2-(9H-carbazol-9-yl)ethyl)piperazin-1-yl)acetaldehyde (19).  

Alcohol 18 (0.30 g, 0.93 mmol) was oxidized using SO3.py complex (0.74 g, 4.64 

mmol), DMSO (3 mL) and Et3N (0.90 mL, 6.49 mmol) in CH2Cl2 (6 mL) according to 

procedure F. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 9:1) to give aldehyde 19 (0.23 g, 77%). The purified aldehyde was used 

immediately for next step. 1H NMR (600 MHz, CDCl3): δ 9.67 (s, 1H), 8.07 (d, J = 7.8 Hz, 

2H), 7.47-7.41 (m, 4H), 7.23-7.21 (m, 2H), 4.44-4.42 (m, 2H), 3.38-3.36 (m, 2H), 2.78-

2.74 (m, 4H), 2.60-2.56 (m, 6H).   

N6-(2-(4-(2-(9H-carbazol-9-yl)ethyl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetra-

hydrobenzo[d]thiazole-2,6-diamine (20) (D-626).  

Compound 19 (0.14 g, 0.44 mmol) was reacted with (±)-pramipexole (0.083 g, 0.39 

mmol) and NaBH(OAc)3 (0.185 g, 0.87 mmol) in CH2Cl2 (10 mL) according to procedure 

G. The crude product was purified by silica gel column chromatography (EtOAc:MeOH = 

4:1) to afford compound 20 (0.115 g, 57%). The compound was converted to HCl salt. 1H 

NMR (400 MHz, CDCl3): δ 8.07 (d, J = 8.4 Hz, 2H), 7.47-7.39 (m, 4H), 7.23-7.20 (m, 2H), 

5.20 (bs, 2H), 4.41 (t, J = 7.2 Hz, 2H), 3.04‒2.97 (m, 1H), 2.75 (t, J = 7.2 Hz, 2H), 2.69‒

2.48 (m, 14H), 2.45 (t, J = 7.2 Hz, 4H), 1.97‒1.94 (m, 1H), 1.73-1.63 (m, 1H), 1.49‒1.40 
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(m, 2H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 166.01, 144.77, 140.29, 

125.70, 122.90, 120.39, 118.96, 116.88, 108.54, 58.52, 58.08, 56.12, 53.59, 53.48, 48.28, 

40.94, 26.46, 25.82, 25.09, 22.33, 11.85; Anal. Calcd for C30H40N6S.5HCl.CH3OH: C, 

50.25; H, 6.61; N, 11.72. Found: C, 50.81; H, 7.00; N, 11.33.  

(S)-N6-(2-(4-(2-(9H-carbazol-9-yl)ethyl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-

tetrahydrobenzo[d]thiazole-2,6-diamine (21) (D-637).  

Compound 19 (0.19 g, 0.59 mmol) was reacted with (-)-pramipexole (0.112 g, 0.53 

mmol) and NaBH(OAc)3 (0.25 g, 1.18 mmol) in CH2Cl2 (12 mL) according to procedure 

G. The crude product was purified by silica gel column chromatography (EtOAc:MeOH = 

4:1) to afford compound 21 (0.13 g, 47%). The compound was converted to HCl salt. 1H 

NMR (600 MHz, CDCl3): δ 8.07 (d, J = 7.8 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 

7.8 Hz, 2H), 7.22 (t, J = 7.8 Hz, 2H), 5.11 (bs, 2H), 4.41 (t, J = 7.2 Hz, 2H), 3.03‒2.98 (m, 

1H), 2.74 (t, J = 7.2 Hz, 2H), 2.69‒2.48 (m, 14H), 2.45 (t, J = 7.2 Hz, 4H), 1.96‒1.94 (m, 

1H), 1.71-1.64 (m, 1H), 1.48‒1.41 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (150 MHz, 

CDCl3): δ 165.85, 144.91, 140.28, 125.68, 122.89, 120.39, 118.95, 117.00, 108.53, 

58.58, 58.08, 56.13, 53.63, 53.52, 48.33, 40.95, 26.52, 25.84, 25.10, 22.35, 11.85; [α]D25= 

-19.8 (c=1.0 in CH2Cl2); Anal. Calcd for C30H40N6S.4HCl.2CH3OH: C, 52.89; H, 7.21; N, 

11.57. Found: C, 53.16; H, 7.14; N, 11.68.  

{2-[4-(2-Carbazol-9-yl-ethyl)-piperazin-1-yl]-ethyl}-(5-methoxy-1,2,3,4-tetrahydro-

naphthalen-2-yl)-propyl-amine (22). 

Compound 19 (0.140.0g, 0.435 mmol) was reacted with (-)-DPAT (0.0.095 g, 0.435 

mmol) and NaBH(OAc)3 (0.184 g, 0.87 mmol) in CH2Cl2 (12 mL) according to procedure 

G. The crude product was purified by silica gel column chromatography (EtOAc:MeOH = 
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4:1) to afford compound 22 (0.09 g, 32.3%). 1H NMR (600 MHz, CDCl3): δ 8.03 (d, J = 

7.8 Hz, 2H), 7.42-7.39 (m, 2H), 7.17 (d, J = 7.2 Hz, 2H), 7.05-7.01 (m, 2H), 6.64 (t, J= 7.8 

Hz, 2H), 6.59 (t, J= 8.4 Hz, 2H), 4.37 (t, J = 7.8 Hz, 2H), 3.74 (s, 1H), 3.61 (t, J= 6 Hz, 

2H), 3.54 (t, J= 5.4 Hz, 2H), 3.46 (t, J= 4.8 Hz, 2H), 3.34 (t, J= 5.4 Hz, 2H), 3.24 (t, J= 5.4 

Hz, 2H), 3.03 (d, J = 4.2 Hz, 1H), 3.00 (d, J = 4.2 Hz, 1H), 2.95 (dd, J= 3.6, 1.8 Hz, 2H), 

2.92 (d, J = 3.6 Hz, 2H), 2.89 (dd, J= 2.4, 2.4 Hz, 2H), 2.88-2.85 (m, 4H), 2.80 (m, 2H), 

2.77 (d, J = 3.0 Hz, 1H), 2.76-2.69 (m, 3H), 2.66-2.64 (m, 2H), 2.02-2.00 (m, 2H), 1.61 

(dd, J=7.8 Hz, 7.2 Hz, 1H), 1.5 (qd, J= 6.6, 5.5 Hz, 2H), 1.42 (dd, J= 6.0, 5.4 Hz, 1H), 

0.91 (t, J= 7.8 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H). 

6-({2-[4-(2-Carbazol-9-yl-ethyl)-piperazin-1-yl]-ethyl}-propyl-amino)-5,6,7,8-

tetrahydro-naphthalen-1-ol (23) (D-689).  

Compound 22 (0.09 g, 0.172 mmol) was dissolved in dryCH2Cl2 and BBr3 was 

added at -40 °C for 2 h, the reaction mixture was stirred overnight at room temp. The 

reaction was quenched with an ice water, and the aqueous layer was extracted with 

CH2Cl2 (3 × 20 mL). The combined organic layer was dried over Na2SO4 and evaporated 

under reduced pressure. The crude product was purified by silica gel column 

chromatography (EtOAC:MeOH = 8:2)  to yield compound 23 (0.025 g, 60%). 1H NMR 

(600 MHz, CD3OD): δ 8.18 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 7.8 Hz, 2H), 6.94 

(t, J = 7.2 Hz, 3H), 6.61 (d, J = 6.6, Hz, 5H), 4.43 (s, 1H), 3.44-3.37 (m, 4H), 3.20-3.18 

(m, 4H), 2.99-2.96 (m, 4H), 2.87-2.83 (m, 4H), 2.75-2.74 (m, 2H), 2.64-2.63 (m, 3H), 2.45-

2.42 (m, 3H), 2.33‒2.32 (m, 4H), 1.79-1.75 (m, 4H), 1.04 (t, J = 7.2 Hz, 3H); 13C NMR 

(150 MHz, CD3OD): δ 154.74, 154.71, 154.66, 138.77, 132.97, 129.77, 128.78, 126.62, 

123.83, 123.55, 122.51, 121.65, 120.70, 119.70, 118.80, 112.99, 112.60, 112.01, 110.56, 
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111.43, 111.11, 55.00, 54.67, 54.20, 53.87, 32.19, 31.78, 31.37, 25.94, 25.42, 25.31, 

24.81, 22.81, 22.22, 21.44, 21.08, 20.37, 20.20, 19.57, 18.94, 10.75, 10.41, 10.09, 9.79, 

9.14; [α]D25= -27.2 (c=1.0 in CH3OH); Anal. Calcd for C33H45Cl3N4O.3HCl: C, 63.92; H, 

7.31; N, 9.04. 

 4-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-ethyl]-piperazin-1-yl}-benzonitrile (25).  

A mixture of 4-Bromo-benzonitrile 24 (1.0g, 5.49 mmol), 1-(2-((tert-

butyldimethylsilyl)oxy)ethyl) piperazine  (2.015 g, 8.24 mmol), Pd(OAc)2 (0.0925 g, 0.412 

mmol), BINAP (0.342 g, 0.55 mmol) and Cs2CO3 (5.37 g, 16.49 mmol) in toluene (25 mL) 

was heated at 110 oC for 24 h according to procedure D. The crude material was purified 

by silica gel column chromatography (hexane:EtOAc = 4:1) to give compound 25 (1.71 g, 

90%). 1H NMR (600 MHz, CDCl3): δ 7.37 (t, J=4.8 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 3.70 

(t, J = 6.0 Hz, 2H), 3.23 (d, J=7.2, 1H), 2.57 (t, J=4.2, 4H), 2.49 (t, J=5.4 Hz, 2H), 1.13 

(td, J=6, 1.2 Hz, 2H), 0.89 (s, 9H), 0.08 (s, 6H). 

Procedure J. 4-[4-(2-Hydroxy-ethyl)-piperazin-1-yl]-benzonitrile (26).  

Into a stirring solution of compound 25 (1.71 g, 4.95 mmol) in THF (50 mL) was 

added n-tetrabutylammonium fluoride (7.42 mL, 7.42 mmol, 1.0 M solution in THF) at 0 

°C. The reaction mixture was then stirred at room temperature for 5 h. THF was 

evaporated in vacuo, and the residue was diluted with CH2Cl2 (25 mL) and washed with 

a saturated solution of NaHCO3. The water layer was extracted with EtOAc (3 × 50 mL). 

The combined organic layer was washed with brine, dried over Na2SO4, and evaporated 

under reduced pressure The crude product was purified by silica gel column 

chromatography (EtOAc:MeOH = 9:1) to give compound 26 as brown powder (0.880 g, 

60.1%). 1H NMR (600 MHz, CDCl3): δ 7.48 (dd, J = 5.4, 1.8 Hz, 2H), 6.84 (d, J = 5.4, 1.8 
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Hz, 2H), 3.67 (t, J = 5.4 Hz, 2H), 3.37(t, J = 2.4 Hz, 4H), 3.33 (t, J = 4.8 Hz, 4H), 2.61 (t, 

J = 5.4 Hz, 2H). 

4-[4-(2-Oxo-ethyl)-piperazin-1-yl]-benzonitrile (27).  

Compound 26 (0.880 g, 3.81 mmol) in CH2Cl2 (30 mL) and DMSO (15 mL), was 

oxidized using SO3.py complex (3.028 g, 19.025 mmol) and Et3N (3.71 mL, 26.635 mmol) 

according to procedure F. The crude product was purified by silica gel column 

chromatography (EtOAc) to yield compound 27 (0.133 g, 62%). 1H NMR (600 MHz, 

CDCl3): δ 9.60 (t, J=1.2 Hz, 1H), 7.37 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 3.39 

(d, J=7.2, 1H), 3.27 (t, J=7.8, 3H), 2.56 (t, J=7.2 Hz, 4H), 1.13 (td, J=6, 1.2 Hz, 2H).   

(s)-4-(4-{2-[(5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-amino]-ethyl}-

piperazin-1-yl)-benzonitrile (28).  

Compound 27 (0.133 g, 0.542 mmol) was reacted with (-)-5-OMe-MPAT (0.107g, 

0.488 mmol) and NaBH(OAc)3 (0.229 g, 1.08 mmol) in CH2Cl2 (15 mL) according to 

procedure G. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 4:1) to afford compound 28 (0.454 g, 32.3%). 1H NMR (600 MHz, CDCl3): 

δ 7.44 (dd, J = 5.4, 1.8 Hz, 2H), 7.05 (t, J = 7.8 Hz, 1H), 6.81 (dd, J = 5.4, 1.8 Hz, 2H), 

6.68 (dd, J= 4.2, 3 Hz, 1H), 6.62 (dd, J= 4.8, 3 Hz, 1H), 3.77 (s, 3H), 3.29 (t, J= 5.4 Hz, 

4H), 2.98 (d, J = 2.4 Hz, 1H), 2.95 (d, J = 6.0 Hz, 1H), 2.80 (dd, J= 4.2, 3 Hz, 1H), 2.71‒

2.68 (m, 2H), 2.66 (t, J = 7.8 Hz, 1H), 2.52‒2.48 (m, 5H), 1.55-1.53 (m, 2H), 1.45 (dd, J= 

7.8, 7.2 Hz, 2H), 1.23(t, J= 7.2 Hz, 2H), 0.91 (td, J=  5.4, 2.4 Hz, 2H), 0.87 (t, J = 7.2 Hz, 

3H). 

Procedure K. {2-[4-(4-Aminomethyl-phenyl)-piperazin-1-yl]-ethyl}-(5-methoxy-

1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-amine (29).  
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Into a stirred solution of compound 28 (454 g, 1.05 mmol) in 30 ml dry THF, 

borane:THF complex in1.0 M THF (2.102 mL, 2.102 mmol) was added dropwise at R. T. 

The reaction mixtures was stirred at 50 oC for 1.5 h, cooled to R.T. Water and conc.HCl 

(2 mL) were added slowly at 0 oC. The solvent was evaporated and 10 ml of 25 % aq. 

NaOH was added at 0oC. The water layer was extracted with EtOAC (3 × 50 mL). The 

combined organic layer was washed with brine, dried over Na2SO4, and evaporated under 

reduced pressure. The crude product was purified by silica gel column chromatography 

(DCM:MeOH = 9:1) to give compound 29 (0.880 g, 60.1%). 1H NMR (600 MHz, CDCl3): 

δ 7.47 (d, J = 9.0, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.09-7.06 (m, 1H), 6.88 (d, J= 8.4, 1H), 

6.83 (d, J= 9.0 Hz, 1H), 6.69 (d, J= 7.8 Hz, 1H), 6.63 (d, J= 8.4 Hz, 1H), 3.79 (s, 3H), 3.31 

(t, J= 5.4 Hz, 2H), 3.19 (t, J = 5.4 Hz, 2H), 2.99 (d, J = 4.8 Hz, 1H), 2.96 (d, J= 3.6 Hz, 

1H), 2.93-2.89 (m, 1H), 2.88-2.82 (m, 2H), 2.73-2.70 (m, 3H), 2.64-2.61 (m, 3H), 2.52-

2.48 (m, 4H), 2.04 (d, J= 12 Hz, 1H), 1.55 (dd, J= 6.6, 5.4 Hz, 2H), 1.48 (dd, J= 7.8, 7.2 

Hz, 2H), 0.88 (t, J= 7.2 Hz, 3H).  

Procedure L. N-[4-(4-{2-[(5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-

amino]-ethyl}-piperazin-1-yl)-benzyl]-2-nitro-benzenesulfonamide (30).  

Into a stirring solution of 2-nitrobenzenesulfonyl chloride (0.4614 g, 0.208 mmol) 

in THF (5 mL), Et 3 N (0.131 mL, 0.937 mmol) was added (S)-

4,5,6,7tetrahydrobenzo[d]thiazole-2,6-diamine 29 (0.10 g, 0.229 mmol)  at −10 °C, and 

the resulting suspension was then stirred at room temperature for 1.5 h. The suspension 

was first filtered to remove precipitated triethylammonium chloride, and the filtrate was 

concentrated in vacuo (Brown et al. 2009). Water was added, and CH2Cl2 (3 × 15 mL) 

was used to extract the product. The combined organic layer was dried over Na2SO4, and 
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the solvent was removed in vacuo to obtain the intermediate 30. The crude mixture was 

was purified by a silica gel column chromatography (0.134 g, 94%). 1H NMR (600 MHz, 

123CD 3 OD): δ 7.24 (d, J = 0.6, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 

6.88 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 7.2 Hz, 1H), 6.64 (d, J = 7.2 Hz, 1H), 3.79 (s, 3H), 

3.18-3.16 (m, 3H), 3.02-2.96 (m, 1H), 2.93-2.91 (m, 1H), 2.87 (t, J= 5.4 Hz, 1H), 2.85-

2.83 (m, 1H), 2.74-2.71 (m, 2H), 2.68 (t, J=5.4 Hz, 1H), 2.65-2.63 (m, 3H), 2.58-2.55 (m, 

1H), 2.52-2.51 (m, 3H), 2.34 (d, J=1.8 Hz, 1H), 2.10-2.04 (m, 1H), 1.98-1.89(m,2H), 1.61-

1.51 (m, 2H), 1.51-1.45 (m, 1H), 0.94-0.91 (m, 2H), 0.89 (s, 3H), 0.07-0.05 (m, 2H).  

Procedure M. N-[4-(4-{2-[(5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl 

amino]-ethyl}-piperazin-1-yl)-benzyl]-2-nitro-N-prop-2-ynyl-benzenesulfonamide 

(31).  

Compound 30 (0.134 g, 0.217 mmol), potassium carbonate (0.90 g, 0.651 mmol), 

and propargyl bromide (0.31 mL, 0.261 mmol) were suspended in acetonitrile (7 mL) and 

the reaction mixture was heated to approximately 50 °C for 5 h. After cooling to room 

temperature, the reaction mixture was filtered, and the filtrate was condensed in vacuo. 

Water was added, and the compound was extracted with EtOAC (3 × 15 mL). The 

combined organic layer was dried over Na2SO4, and the solvent was removed in vacuo 

to give the crude product, which was purified by column chromatography using (1:9) 

MeOH:EtOAC to give intermediate 31 (0.345 g, 60%). 1H NMR (600 MHz, 123CD 3 OD): 

δ 7.97 (d, J = 7.8, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.69-7.59 (m, 2H), 7.24 (dd, J= 3.6, 1.2 

Hz, 1H), 7.19 (d, J=7.8 Hz, 1H), 7.06 (t, =8.4, 2H), 6.83 (d, J=7.8 Hz, 1H), 6.71 (dd, J= 

7.8, 7.8, 2H), 6.64 (d, J= 7.8, 1H),  4.48 (s, 1H), 4.20 (s, 1H), 3.98 (s, 1H), 3.79 (s, 3H), 

3.34 (d, J=1.2 Hz, 1H), 3.17 (d, J= 4.2 Hz, 2H), 3.11 (d, J= 4.8 Hz, 2H), 2.99 (d, J= 5.4 
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Hz, 1H), 2.96 (d, J=3.6 Hz, 1H), 2.88-2.85 (m, 1H), 2.87-2.77 (m, 3H), 2.62-2.48 (m, 8H), 

2.13-2.11 (m, 1H), 2.080-2.07 (m, 1H), 1.58 (dd, J= 5.4, 4.8 Hz, 2H), 1.51-1.50 (m, 2H), 

0.89 (t, J= 7.2 Hz

 Procedure N. (5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-{2-[4-(4-prop-

2-ynylaminomethyl-phenyl)-piperazin-1-yl]-ethyl}-amine (32).  

Potassium carbonate (0.118 g, 1.364 mmol) was suspended in DMF (6 mL) and 

the suspension was cooled to 0 °C followed by slow addition of thioglycolic acid (0.070 

mL, 0.758 mmol) and propargyl bromide (0.194 ml, 1.63 mmol). The mixture was stirred 

for 1 h at room temperature. A solution of the intermediate 31 (0.345 g, 0.522 mmol) in 

DMF (15 mL) was added, the reaction mixture was heated to 50 °C and stirred overnight. 

The reaction mixture was quenched carefully by adding 1N NaOH at room temperature, 

and CH2Cl2 (4 × 30 mL) was used to extract the product. The combined organic layer was 

dried over Na2SO4, and the solvent was removed in vacuo to give the crude, which was 

purified by a silica gel column chromatography using EtOAC:MeOH (9:1) to give 

compound 32 (0.30 g, 64%). 1H NMR (600 MHz, CDCl 3): δ ppm 7.46 (dd, J = 5.4, 1.8 

Hz, 1H), 7.22 (d, J = 1.8 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H),  6.85 (d, J= 9.0 Hz, 2H), 6.84-

6.82 (m, 2H), 6.70 (d, J=7.8 Hz, 1H), 6.64 (d, J=7.8 Hz, 1H), 3.79 (s, 3H), 3.38 (d, J=2.4 

Hz, 2H), 3.34-3.30 (m, 3H), 3.19 (d, J= 5.4 Hz, 2H), 2.99 (dd, J= 4.8 Hz, 2H), 2.87-2.84 

(m, 2H), 2.76-2.74 (m, 3H), 2.66 (d, J= 4.2 Hz, 2H), 2.62(d, J= 3.6 Hz, 2H), 2.55-2.53 (m, 

4H), 2.24 (d, J= 1.8 Hz, 1H), 1.58-1.56 (m, 2H), 1.50-1.49 (m, 2H),  0.89 (t, J=7.2 Hz, 3H). 

Procedure O. 6-(Propyl-{2-[4-(4-prop-2-ynylaminomethyl-phenyl)-piperazin-1-yl]-

ethyl}-amino)-5,6,7,8-tetrahydro-naphthalen-1-ol (33).  
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Compound 32 (0.050 g, 0.105 mmol) was dissolved in dry CH2Cl2 and BBr3 was 

added at -40 °C for 2 h. The reaction mixture was stirred overnight at room temp. The 

reaction was quenched by adding ice water, and the aqueous layer was extracted with 

CH2Cl2 (3 × 15 mL). The combined organic layer was dried over Na2SO4 and evaporated 

under reduced pressure. The crude product was purified by silica gel column 

chromatography (EtOAC:MeOH = 8:2)  to yield the final compound 33 (D-671) (0.025 g, 

60%). 1H NMR (600 MHz, CD3OD): δ ppm 7.48 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 0.6 Hz, 

1H), 7.07 (d, J = 8.4 Hz, 1H),  6.84 (d, J= 9.0 Hz, 2H), 6.70 (d, J=7.8 Hz, 1H), 6.64 (d, 

J=7.8 Hz, 1H), 3.31 (d, J= 5.4 Hz, 4H), 3.00-2.99 (m, 1H),  2.96-2.99 (m, 144H), 2.86-2.86 

(m,1H), 2.7-2.70 (m, 3H), 2.64-2.61 (m, 3H), 2.52-2.50 (m, 3H), 1.57-1-54 (m, 2H), 1.49-

1.46 (m, 2H), 0.89 (t, J=7.2 Hz, 3H). 13C NMR (150 MHz, CD3OD): δ 233.87, 229.67, 

223.82, 218.35, 210.53, 204.88, 199.54, 196.80, 190.59, 156.53, 156.20, 121.25, 118.65, 

108.23, 101. 50, 66.22, 55.28, 51.11, 46.77, 42.15, 31.26, 30.02, 29.69, 25.49, 22.68, 

14.12, 8.71; [α]D25= -22 (c=1.0 in CH3OH); Anal. Calcd for C28H40N4O3.3HBr, 2H2O: C, 

54.21; H, 7.53; N, 8.72. Found: C 54.31; H, 7.29; N, 8.54. 

Procedure P. (5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-[2-(4-{4-[(methyl-

prop-2-ynyl-amino)-methyl]-phenyl}-piperazin-1-yl)-ethyl]-propyl-amine (34). 

A mixture of compound 32 (0.7 g, 0.147 mmol), 37% aqueous formaldehyde (6.13 

ml, 0.221 mmol), and NaH2PO4 (0.176 g, 0.147 mmol) were suspended in (10 mL) water 

and stirred for 5 min at room temperature. The mixture was refluxed at 30 oC for 48 h. 

The reaction was quenched by adding water and the crude was extracted with CH2Cl2 (3 

* 10 mL). The crude material was purified by a silica gel column chromatography (EtOAC: 

MeOH= 9:1) to give compound 34 (0.51 g, 71%). 1H NMR (600 MHz, CDCl3): 7.13-7.10 
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(m, 2H), 6.86-6.84 (m, 2H), 6.71-6.65 (m, 3H), 3.79 (s, 3H), 3.65-6.63 (m, 1H), 3.53-3.50 

(m, 1H), 3.37 (s, 2H), 3.19 (s, 3H), 3.11-3.07 (m, 2H), 3.01-2.98 (m, 4H), 2.76-2.72 (m, 

3H), 2.60-2.56 (m, 4H), 2.66 (d, J= 4.2 Hz, 2H), 2.62 (d, J= 3.6 Hz, 2H), 2.54-2.49 (m, 

5H), 2.24-2.24 (m, 1H), 1.99-1.95 (m, 3H), 1.69-1.63 (m, 2H), 1.54-150 (m, 2H), 1.01 (d, 

J= 7.2 Hz, 3H), 0.89 (t, J=11.4 Hz, 3H). 

6-{[2-(4-{4-[(Methyl-prop-2-ynyl-amino)-methyl]-phenyl}-piperazin-1-yl)-ethyl]-

propyl-amino}-5,6,7,8-tetrahydro-naphthalen-1-ol (35).  

Compound 34 (0.050 g, 0.105 mmol) was dissolved in dry CH2Cl2 and BBr3 was 

slowly added at -40 °C for over a period of 2 h. The reaction mixture was stirred overnight 

at room temp according to procedure O. The crude product was purified by silica gel 

column chromatography (EtOAC:MeOH = 8:2)  to yield compound 35 (D-677) (0.020 g, 

55%). 1H NMR (600 MHz, CD3OD): 7.26-7.22 (m, 1H), 7.09-7.06 (m, 1H), 6.86-6.82 6 (m, 

2H), 6.70 (d, J=7.2 Hz, 1H), 6.64 (d, J=7.8 Hz, 1H), 3.39-6.38 (m, 1H), 3.34-3.30 (m, 3H), 

63.19 (d, J=4.2 Hz, 2H), 3.01-2.94 (m, 2H), 2.87-2.84 (m, 3H), 2.75-2.74 (m, 3H), 2.66 (d, 

J= 4.2 Hz, 2H), 2.62 (d, J= 3.6 Hz, 2H), 2.54-2.49 (m, 5H), 2.24-2.24 (m, 1H), 2.07-2.02 

(m, 1H), 1.58-1.54 (m, 1H), 1.49 (t, J=6.6 Hz, 2H), 0.89 (t, J=11.4 Hz, 3H). 13C NMR (150 

MHz, CD3OD): δ 232.81, 229.21, 222.31, 217.46, 211.65, 202.40, 197.89, 194.32, 

190.12, 154.96, 153.01, 150,89, 120.76, 117.30, 106.80, 101. 02, 64.57, 53.79, 50.70, 

45.77, 41.58, 30.79, 29.92, 27.45, 24.56, 20.94, 12.83, 8.06; [α]D25= -25 (c=1.0 in 

CH3OH); Mp. 205-210 oC, Anal. Calcd for C30H42N4O.3HCl, H2O: C, 54.33; H, 7.69; N, 

7.20. Found: C 54.05; H, 7.22; N, 7.12.  

4-(4-Hydroxy-phenyl)-piperazine-1-carboxylic acid tert-butyl ester (37). 
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A mixture of 4-Piperazin-1-yl-phenol 36 (1.0g, 5.49 mmol), 1-(2-((tert-

butyldimethylsilyl)oxy)ethyl) piperazine  (2.015 g, 8.24 mmol), Pd(OAc)2 (0.0925 g, 0.412 

mmol), BINAP (0.342 g, 0.55 mmol) and Cs2CO3 (5.37 g, 16.49 mmol) in toluene (25 mL) 

was heated at 110 oC for 24 h according to procedure D. The crude material was purified 

by a silica gel column chromatography (hexane:EtOAc = 4:1) to give compound 25 (1.71 

g, 90%). 1H NMR (600 MHz, CDCl3): δ 7.24-6.87 (m,4H), 3.55 (t, J= 1.8 Hz, 4H), 2.94 (s, 

2H), 2.86 (s, 2H), 1.46 (s, 9H).  

4-(4-Prop-2-ynyloxy-phenyl)-piperazine-1-carboxylic acid tert-butyl ester (38).  

Compound 37 (0.134 g, 0.217 mmol), potassium carbonate (0.90 g, 0.651 mmol), 

and propargyl bromide (0.31 ml, 0.261 mmol) were suspended in acetonitrile (7 mL). The 

stirring mixture was heated to approximately 50 °C for 5 h according to procedure M. The 

crude, Procedure l which was purified by column chromatography using (1:9) 

MeOH:EtOAC to give intermediate 31 (0.345 g, 60%). 1H NMR (600 MHz, CDCl3): δ 7.24-

6.87 (m,4H), 4.62 (d, J= 1.8 Hz, 2H), 3.55 (t, J= 1.8 Hz, 4H), 2.94 (s, 2H), 2.86 (s, 2H), 

2.49-2.48 (m,1H), 1.46 (s, 9H). 

1-(4-Prop-2-ynyloxy-phenyl)-piperazine (39).  

Into a stirring solution of compound 38 (0.110 g, 0.293 mmol) in THF (10 mL) was 

added n-tetrabutylammonium fluoride (0.127 ml, 0.44 mmol, 1.0 M solution in THF) at 0 

°C by following procedure E. The crude product was purified by silica gel column 

chromatography (EtOAC:MeOH = 9:1) to give compound 39 (0.50 g, 78.7%). 1H NMR 

(600 MHz, CDCl3): δ 6.89-6.88 (m, 4H), 4.61 (d, J = 2.4 Hz, 2H), 3.04-3.02 (m, 8H), 2.50 

(t, J= 2.4 Hz, 1H).  

Procedure Q. 2-[4-(4-Prop-2-ynyloxy-phenyl)-piperazin-1-yl]-ethanol (40).  
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A suspension of 1-(4-Prop-2-ynyloxy-phenyl)-piperazine 39 (0.130 g, 0.601 mmol), 

potassium carbonate (48.13 g, 348.27 mmol), and 2-Bromo-ethanol (0.017 mL, 0.24 

mmol) in acetonitrile (5 mL) was refluxed under N2 overnight. The reaction mixture was 

filtered off, and the filtered was evaporated under reduced pressure. The residue was 

then diluted with ether, washed with water, dried over Na2SO4, filtered, and concentrated 

to give alcohol 40 (0.085g, 54.32%). 1H NMR (600MHZ, CDCL3): δ 6.92-6.87 (m, 4H), 

4.61 (d, J = 2.4 Hz, 2H), 3.84-3.82 (m, 2H), 3.34-3.31 (m, 2H), 3.05-3.04 (m, 4H), 3.00 

(m, 4H), 2.50 (t, J= 2.4 Hz, 1H). 

[4-(4-Prop-2-ynyloxy-phenyl)-piperazin-1-yl]-acetaldehyde (41). 

Compound 40 (0.200 g, 0.768 mmol) in CH2Cl2 (10 mL) and DMSO (5 mL), was 

oxidized using SO3.py complex (3.028 g, 19.025 mmol) and Et3N (0.611 mL, 3.84 mmol) 

according to procedure F. The crude product was purified by silica gel column 

chromatography (EtOAC) to yield compound 41 (0.170 g, 85.6%). 1H NMR (600 MHz, 

CDCl3): δ 7.84 (s, 1H), 7.00 (dd, J= 6.0, 1.8 Hz, 1H), 6.61-6.59 (m, 1H), 6.17-6.13 (m, 

2H), 4.77 (d, J= 0.6 Hz, 1H), 3.92-3.90 (m, 4H), 3.84-3.82 (m, 2H), 3.33-3.31 (m, 4H), 

3.26-3.23 (m, 4H). 

(5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-{2-[4-(4-prop-2-ynyloxy-

phenyl)-piperazin-1-yl]-ethyl}-amine (42, D-678).  

Compound 41 (0.170 g, 0.658 mmol) was reacted with (±)-5-OMe-MPAT (0.129 g, 

0.592 mmol) and NaBH(OAc)3 (0.278 g, 1.316 mmol) in CH2Cl2 (15 mL) according to 

procedure G. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 4:1) to obtain compound 42 (D-678) (0.060 g, 32.3%). 1H NMR (600 

MHz, CDCl3): δ 7.24-6.92 (m, 1H), 6.90-6.87 (m, 4H), 6.69 (d, J= 7.8 Hz, 1H), 6.63 (d, J= 
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7.8 Hz, 1H), 4.63-4.61 (m, 2H), 3.79 (s, 3H), 3.69-3.68 (m, 1H), 3.52-3.50 (m, 1H), 3.34-

3.33 (m, 1H), 3.12-3.05 (m, 4H), 3.03-3.01 (m, 1H), 2.99-2.98 (m, 1H), 2.96-2.95 (m, 1H), 

2.85-2.83 (m, 1H), 2.76-2.71 (m, 2H), 2.66-2.63 (m, 3H).2.53-2.50 (m, 1H), 2.49-2.47 (m, 

2H), 0.87 (t, J= 7.8 Hz, 3H).  13C NMR (150 MHz, CD3OD): δ 235.34, 231.04, 224.94, 

219.39, 214.29, 207.74, 199.97, 197.85, 195.48, 159.34, 157.36, 153,32, 126.06, 122.76, 

110.21, 107. 43, 69.93, 59.20, 55.60, 49.35, 44.67, 34.23, 32.79, 29.98, 28.45, 25.53, 

16.93, 14. 67, 10.65; [α]D25= -24 (c=1.0 in CH3OH); Mp = 195 °C, Anal. Calcd for 

C29H42N3O2.3HCl, H2O, C, H, N.  

 2-[4-(4-Nitro-phenyl)-piperazin-1-yl]-ethanol (44). 

A mixture of 2-bromoethanol (0.274 mL, 3.86 mmol), 1-(4-Nitro-phenyl)-piperazine 

43 (2.0 g, 9.65 mmol), and K2CO3 (4.0 g, 28.95 mmol) in acetonitrile (25 mL) was refluxed 

for 24 h under inert condition according to procedure Q. The crude material was purified 

by silica gel column chromatography (hexane:EtOAc = 3:2) to give compound 44 (1.20 g, 

49.5%). 1H NMR (600 MHz, CDCl3): δ 6.82-6.80 (m, 2H), 6.50-7.44 (m, 2H), 3.76 (t, J = 

6.8 Hz, 2H), 2.76 (t, J = 7.2 Hz, 2H), 2.68-2.57 (m, 4H), 2.54 (t, J = 6.4 Hz, 4H).  

 [4-(4-Nitro-phenyl)-piperazin-1-yl]-acetaldehyde (45). 

Compound 44 (1.20 g, 4.77 mmol) in CH2Cl2 (20 mL) and DMSO (10 mL), was 

oxidized using SO3.py complex (3.80 g, 23.87 mmol) and Et3N (4.65 mL, 33.43 mmol) 

according to procedure F. The crude product was purified by silica gel column 

chromatography (EtOAc) to yield compound 45 (0.80 g, 67.2%). 1H NMR (600 MHz, 

CDCl3): δ 6.82-6.79 (d, J = 9.6, 2.4 Hz, 2H), 6.69-6.64 (m, 2H), 4.10 (t, J = 7.2 Hz, 2H), 

3.25 (t, J = 1.2 Hz, 2H), 2.74 (t, J = 4.2 Hz, 4H), 2.25 (m, 2H).  
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(5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-{2-[4-(4-nitro-phenyl)-piperazin-1-

yl]-ethyl}-propyl-amine (46).  

Compound 45 (0.251 g, 1.007 mmol) was reacted with (-)-5-OMe-MPAT (0.197g, 

0.906 mmol) and NaBH(OAc)3 (0.427 g, 2.015 mmol) in CH2Cl2 (15 mL) according to 

procedure G. The crude product was purified by silica gel column chromatography 

(EtOAc:MeOH = 4:1) to afford compound 46 (0.30 g, 65.7%). 1H NMR (600 MHz, CDCl3): 

δ 8.10 (dd, J = 4.8, 2.4 Hz, 2H), 7.08 (t, J = 7.8 Hz, 1H), 6.79 (dd, J = 7.8, 1.8 Hz, 2H), 

6.69 (d, J = 7.8 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 3.79 (s, 3H), 3.40 (t, J = 5.4 Hz, 4H), 

3.00 (d, J = 4.2 Hz, 1H), 2.79 (d, J = 3.6 Hz, 1H), 2.95-2.93 (m, 1H), 2.85-2.82 (m, 1H), 

2.76‒2.70 (m, 3H), 2.65‒2.60 (m, 4H), 2.53‒2.48 (m, 5H), 2.03 (dd, J = 4.2, 3.0 Hz, 4H), 

1.59-1.52 (m, 2H), 1.50‒1.44 (m, 1H), 0.87 (t, J = 7.2 Hz, 3H). 

Procedure R. {2-[4-(4-Amino-phenyl)-piperazin-1-yl]-ethyl}-(5-methoxy-1,2,3,4-

tetrahydro-naphthalen-2-yl)-propyl-amine (47).  

Compound 46 (0.30, 0.661) was dissolved in methanol (15 mL) and the mixture 

was hydrogenated on a parr apparatus (1 atm) in the presence of 10% Pd-C (.070 g, 10 

wt %) at 30 psi for overnight. Then, the reaction mixture was filtered through a short bed 

of Celite, and the filtrate was concentrated under reduced pressure on a rotary 

evaporator. The crude was purified via column chromatography using MeOH:EtOAc 

(1:10) as the eluent to afford the amine 48 (0.20 g, 71.4%). %). 1H NMR (600 MHz, 

CDCl3): δ 7.08 (t, J = 8.4 Hz, 1H), 6.80-6.78 (m, 2H), 6.70 (d, J = 7.2 Hz, 1H), 6.64-6.62 

(m, 3H), 3.79 (s, 3H), 3.41 (s, 2H), 3.05 (t, J= 4.8 Hz, 4H), 2.99 (dq, J= 3.6, 1.8 Hz, 1H), 

2.92 (tq, J= 2.4,1.8 Hz, 1H), 2.86 (d, J= 2.4 Hz, 1H), 2.83 (d, J= 3.0 Hz, 1H), 2.75-2.71(m, 
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2H), 2.67-2.63 (m, 4H), 2.55-2.48 (m, 5H), 2.07-2.03 (m, 1H), 1.60-1.55 (m, 2H), 1.51-

1.44 (m, 1H),  0.89 (t, J = 7.2 Hz, 3H). 

Procedure S. (5-Methoxy-1,2,3,4-tetrahydro-naphthalen-2-yl)-propyl-{2-[4-(4-prop-

2-ynylamino-phenyl)-piperazin-1-yl]-ethyl}-amine (48).  

Compound 47 (0.109 g, 0.332 mmol), potassium carbonate (0.137 g, 0.995 mmol), 

and propargyl bromide (0.047 mL, 0.398 mmol) were suspended in acetonitrile (10 mL).  

according to procedure N. The crude compound was purified by column chromatography 

using (1:9) MeOH:EtOAC to give compound 48 (0.456 g, 40%). 1H NMR (600 MHz, CDCl 

3): δ ppm 7.08-7.06 (m, 1H), 6.85 (td, J= 3.6, 1.8 Hz, 2H), 6.69 (d, J= 7.8 Hz, 1H), 6.67-

6.63 (m, 3H), 3.89 (dd, J = 4.2, 2.4 Hz, 2H), 3.79 (s, 3H), 3.60 (d, J = 6.6.   Hz, 1H), 3.98 

(dd, J= 13.8, 4.2 Hz, 2H), 2.94-2.88 (m, 1H), 2.85 (d, J= 2.4 Hz, 2H), 2.82 (d, J= 2.4 Hz, 

2H), 2.76-2.82 (m, 3H), 2.64-2.63 (m, 4H), 2.53-2.47 (m, 5H), 2.19 (s, 1H), 2.06-2.03 (m, 

1H), 1.59 (m, 2H), 1.50-1.44 (m, 2H), 0.88 (t, J= 7.8, 3H). 

6-(Propyl-{2-[4-(4-prop-2-ynylamino-phenyl)-piperazin-1-yl]-ethyl}-amino)-5,6,7,8-

tetrahydro-naphthalen-1-ol (49).   

Compound 48 (0.0456 g, 0.140 mmol) was dissolved in dryCH2Cl2 (5 mL) and BBr3 

(0.110 ml, 0.705 mmol) was added at -40 °C for 2 h, the reaction mixture was stirred 

overnight at room temp according to procedure O. The crude product was purified by 

silica gel column chromatography (EtOAC:MeOH = 8:2)  to yield HBr salt of 49 (0.025 g, 

60%). 1H NMR (600 MHz, CD3OD): δ 7.12 (d, J = 7.2 Hz, 1H), 6.97 (d, J = 7.8 Hz, 1H), 

6.90-6.82 (m, 2H), 6.71 (d, J = 4.8 Hz, 1H), 6.68-6.67 (m, 1H), 4.10 (q, J= 7.2 Hz, 3H), 

3.79 (s, 2H), 3.65-3.63 (m, 2H), 3.33 (s, 3H), 3.22-3.00 (m,7H), 2.79 (s, 1H), 2.59-2.53 

(m, 4H), 2.32 (t, J = 7.2 Hz, 1H);  2.27 (t, J = 7.2 Hz, 1H);  2.1-2.03 (m, 3H), 1.61 (t, J = 
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8.4 Hz, 3H), 1.07 (t, J = 6.0 Hz, 3H). 13C NMR (150 MHz, CD3OD): δ 155.43, 142.45, 

142.83, 135.09, 128.67, 128.48, 128.49, 124.59, 123.49, 122.48, 121.32, 120.56, 120.34, 

120.05, 119.59, 115.69, 113.34, 113.01, 75.30, 65.29, 56.39, 54.89, 54.21, 53.98, 53.30, 

46.34, 34.09, 26.40, 24.39, 22.23, 13.41, 11.98; [α]D25= -26.08 (c=1.0 in CH3OH); Anal. 

Calcd for C28H38N4O.3HBr: C, H, N.  

Procedure T. 1,1-Diphenyl-but-3-en-1-ol (51).  

Into a mixture of benzophenone (50) (5.0 g, 27.40 mmol) in anhydrous THF (50.0 

mL), cupper iodide (CuI) (0.52 g, 2.74 mmol) at -78 oC under nitrogen was added allyl 

magnesium chloride in THF (3.39 g, 2 mmol) slowly under stirring condition. The reaction 

mixture was warmed slowly to room temperature and stirred overnight. The mixture was 

cooled to 0 oC and sat. NH4Cl and water were added. The organic layer was separated, 

and the aqueous layer was extracted with EtOAC (3 * 100 ml). The organic layer was 

combined, dried over Na2SO4 and concentrated in rotary evaporator. The crude product 

was mostly pure   compound 51 (6.14 g, 99%) and used for the next step without further 

purification. 1H NMR (500MHz, CDCl3) δ, 7.42–7.45 (m,4H), 7.27–7.23 (m,4H), 7.18–7.12 

(m,2H), 5.68–7.62 (m,1H), 5.20–5.12 (m,2H), 2.58 (S, 1H).  

Procedure U. 1,1-Diphenyl-but-3-en-1- (prop-3-en)ol ether (52).  

The alcohol 51 (6.14 g, 27.37 mmol) was taken in an oven-dried RB flask equipped 

with a magnetic stir-bar. Anhydrous DMF (50ml) was then added to the flask via syringe. 

The solution was cooled to 0 oC, and NaH 60% (13.45 g, 560.42 mmol) was added 

portionwise . The reaction mixture was stirred for 15-20 min. Next the allyl bromide (18.42, 

152.26 mmol) was added dropwise, after 5 min the water bath was removed, and the 

reaction mixture was stirred at room temperature for 1.5 h. Reaction mixture was cooled 
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again to 0 oC and the reaction was quenched with ethyl acetate followed by addition of 

water. The crude was purified by gradient column chromatography using hexan:EtOAC 

(10:1) to yield compound 52 (7.0 g, 96%). 1H NMR (600 MHz, CDCl3): δ 7.24-7.30 (m,4H), 

7.21-7.19 (m, 4H), 7.13-7.11 (m,2H), 5.86-5.80 (m, 1H), 5.57-5.50 (m,1H), 5.29-5.26 

(m,1H), 5.06-5.03(m, 1H), 4.96-4.94 (m, 1H), 4.91-4.88 (m, 2H), 3.07 (dd, J= 5.4, 1.2Hz), 

2.91-2.79 (m, 2H). 

Procedure V. 2,2-Diphenyl-3,6-dihydro-2H-pyran (53).  

Into a stirred solution of vinyl ether (52) dissolved in anhydrous benzene under 

continuous flow of nitrogen at room temperature, 1st generation Grubb’s catalyst (0.44 g, 

0.53 mmol) was added. The solution mixture was slowly heated to reflux at 90 oC for 2 h. 

After the reaction mixture was cooled to room temperature, the solvent was removed 

under reduced pressure on a rotary evaporator. The crude residue was purified by 

gradient column chromatography using hexane:EtOAC (9.5:0.5) to yield the cyclic olefin 

53 (3.25 g, 51.1%). 1H NMR (600 MHz, CDCl3): δ 7.36 (dd, J=7.8, 0.6 Hz, 4H), 7.31-7.29 

(m, 4H), 7.24-7.21 (m, 2H), 6.0-5.96 (m, 1H), 5.64 (dt, J=2.4,1.8, 1H), 4.06-4.04 (m, 2H), 

2.82-2.80 (m, 2H). kimkk 

Procedure W.  2,2-Diphenyl-7-oxa-bicyclo[4.1.0]heptane (54). 

m-CPBA (1.64 g, 9.35 mmol, 50% wt/wt in water), was added portion wise to a 

solution of alkene 53 (1.50 g, 6.35 mmol) in DCM (15 ml) at 0 oC. The ice bath was 

removed, and the reaction mixture was stirred at room temperature for 24 h. Next, the 

reaction mixture was cooled again to 0 oC and quenched with saturated NaHCO3 (100 

mL). The organic layer was separated, and the aqueous layer was extracted with 

additional DCM (2 × 50 ml). The organic layers were combined and washed with brine 
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100 mL. The organic layer was separated, dried over Na2SO4, and concentrated over 

rotary evaporator. The crude product was purified via gradient silica gel column 

chromatography using hexane:EtOAC, 8:1 to obtain pure racemic epoxide 54 (wrong 

structure in the scheme) (0.53 g, 50%). 1H NMR (600 MHz, CDCl3): minor portion; δ 

7.44-7.38 (m, 4H), 7.30-7.23 (m, 5H), 7.18-7.15 (m, 1H), 4.22-4.16 (m, 1H), 4.07 (dd, J= 

6.11, 5.49 Hz, 1H), 3.99-3.94 (m, 1H), 3.37-3.30 (m, 2H), 2.50-2.46 (m, 1H), 2.29 (s, 1H), 

major portion: δ 7.46-7.44 (m, 2H), 7.38 (t, J= 7.63 Hz), 7.30- 7.22 (m, 5H), 7.17- 7.14 

(m, 1H), 4.11 (J=7.02, 5.88 Hz, 1Hz), 4.04- 3.99 (m, 1Hz), 3.94-3.90 (m, 1H), 3.58 (t, J= 

11.60 Hz, 1H), 3.20 (dd, J= 9.77, 4.27, Hz, 1 H), 2.42 (d, J= 2.13 Hz, 1H), 2.03-1.98 (m, 

1H). 

Procedure X. 2-Azido-5,5-diphenyl-cyclohexanol (55 a, and b).  

Epoxide 54 (0.43 g, 1.70 mmol) was dissolved in MeOH:H2O (8:1). Sodium azide 

(0.55 g, 8.52 mmol) and NH4Cl (0.18 g, 3.40 mmol) were added at once. The mixture was 

then stirred for 48 h at 80 °C under a continuous flow of N2, cooled to room temperature, 

and quenched with water (50 mL). The solution was extracted with EtOAC (3 × 50 mL), 

the organic layers were combined and washed with brine (25 mL). The organic layer was 

separated, dried over Na2SO4, and concentrated under reduced pressure on a rotary 

evaporator. The crude product was purified by gradient silica gel column chromatography 

using Hexan:EtOAC to obtain the racemic azide (55 a and b) (0.23 g, 46 %).1H NMR 

(600 MHz, CDCl3): δ 7.44-7.43 (m, 4H), 7.30-7.23 (t, 5H), 7.26-7.19 (m, 1H), 4.15-4.12 

(m, 1H), 3.56 (dd, J= 8.4, 6.0 Hz, 1H), 3.37-3.30 (m, 2H), 2.97-2.91 (m, 1H), 2.50-2.46 

(m, 1H), 2.30-2.26 (m, 1H).  
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Procedure Y. 2-Amino-5-(1-methylene-but-2-enyl)-5-phenyl-cyclohexanol (56 a, and 

b). 

The azides (55 a, and b) (0.32 g, 0.78 mmol) was dissolved in methanol (5 mL) 

and the mixture was hydrogenated on a parr apparatus (1 atm) in the presence of 10% 

Pd-C (0.026 g, 10 wt %) at 30 psi for overnight according to procedure R. The crude was 

purified via column chromatography using MeOH:DCM (1:10) as the eluent to afford the 

amine (56a and b) (0.050 g, 50%). 1H NMR (600 MHz, CDCl3): δ 7.44-7.43 (m, 4H), 7.30-

7.23 (t, 5H), 7.26-7.19 (m, 1H), 4.15-4.12 (m, 1H), 3.56 (dd, J= 8.4, 6.0 Hz, 1H), 2.97-

2.91 (m, 1H), 1.80–1.48 (m, 2 H), 1.28–1.72 (m, 1 H). 

Procedure R. 2-(4-Methoxy-benzylamino)-5,5-diphenyl-cyclohexanol (57a and b).  

4-methoxy-benzaldehyde (0.035 g, 0.26 mmol) was dissolved in a mixture of 1,2-

dichloromethane (3 mL)/methanol (1 mL) and glacial acetic acid (0.015 µL, 0.26 mmol) 

was then added. Then, amine (56a and b) (0.107 g, 0.38 mmol) was added and the 

solution stirred at room temperature for 2 h following which Na(OAc)3BH (0.0.05 g, 0.24 

mmol) was added. The resulting mixture was then stirred at room temperature for 24 

hours, cooled to 0 °C, diluted with DCM (12 mL) and quenched by the addition of water 

(18 mL). The organic layer was separated, and the aqueous layer was extracted with 

additional DCM (3 × 18 mL). The organic layers were combined, dried over Na2SO4, and 

concentrated under reduced pressure on a rotary evaporator. The crude residue was 

purified by gradient silica gel column chromatography using DCM:MeOH (10:1) to obtain 

compounds (57a (D-594) and 57 b) (68 mg, 46%). (c = 1, MeOH). 1H NMR (500 MHz, 

CDCl3): δ 7.46-7.44 (m, 2 H), 7.33 (t, J = 7.93 Hz, 2 H), 7.32-7.27 (m, 2 H), 7.23-7.22 (m, 
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2 H), 7.20-7.18 (m, 2 H), 7.13 (t, J = 7.32 Hz, 2 H), 6.84–6.82 (m, 2 H), 4.1-4.07 (m, 1H), 

3.78 (s, 3H), 3.59-3.53 (m, 1H), 3.12-3.07 (m, 2H), 2.76-2.71 (m, 1H), 1.93-1.88 (m, 2H),  

13C NMR (100 MHz, CDCl3): δ 158.7, 147.61, 132.1, 129.2, 128.7, 127.1, 126.63, 113.8, 

81.2, 69.3, 69.6, 61.2, 55.2, 55.24, 50.86, 42.4. The free base was converted into 

corresponding hydrochloride salt. Mp = 250–255 °C. Anal. (C25H28NO2. HCl) C, H, N.  

Procedure Z. 2-(4-Methoxy-phenyl)-ethylamine (59).  

4-methoxyphenylacetonitrile (2.0 g, 13.59 mmol) was dissolved in THF (11 mL) at 

room temperature and the reaction mixture was cooled to 0 oC followed by addition of 

borone-methyl sulfide complex (5.74 g, 47.56 mmol). The reaction mixture was stirred for 

2 h, then gradually warmed to 40 oC and stirred overnight. The reaction mixture was 

slowly quenched by adding 2N HCl solution (16 ml), the quenched mixture was stirred for 

1 h at 40 oC followed by the addition of conc.NH4OH (5 ml) then EtOAC, and dibasic 

sodium phosphate. The organic layer was separated, dried over Na2SO4, and 

concentrated over rotary evaporator to get compound (59). The crude was mostly pure 

for use in the next step without further purification (0.1 g, 0.396 mmol) 1H NMR (600 MHz, 

CDCl3): δ 7.06–7.05 (m, 2 H), 6.84-6.82 (m, 2 H), 4.21-4.17 (m, 2 H), 3.71 (s, 3 H), 3.54-

3.53 (s, 2H). 

Procedure Z’. 2-[2-(4-Methoxy-phenyl)-ethylamino]-5,5-diphenyl-cyclohexanol (60a 

and b).  

A mixture of epoxide (0.1 g, 0.396 mmol) and 2-(4-methoxyphenyl) ethan-1-amine 

(1.198g, 7.92 mmol) in ethanol was refluxed at 100 oC under N2 overnight. The reaction 

was quenched with saturated NaHCO3, and DCM was added.  The organic layer was 

separated, dried over Na2SO4, and concentrated in rotary evaporator. The crude product 
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was purified via gradient silica gel column chromatography using MeOH:DCM (1:10) to 

get compounds (60a (D-620), and b (D-621)) (0.096 and 0.025 g, 64% and 17%). Major 

yield: 1H NMR (600 MHz, CDCl3): δ 7.45 (d, J= 7.2 Hz, 2H), 7.33 (t, J= 7.5Hz, 2H), 7.28 

(d, J= 7.8 Hz, 2H), 7.23 (t, J= 7.8 Hz, 1H), 7.22 (t, J= 7.8 Hz,2H), 7.14 (t, J= 7.5 Hz, 1H), 

7.07( d, J=8.4 Hz, 2H), 6.8 (d, J= 8.4 Hz, 2H), 4.07 (dd, J= 11.50, 4.8 Hz, 1H), 3.77 (s, 

3H), 3.50 (td, J= 11.60, 4.1 Hz, 1H), 3.09 (dd, J= 11.60, 4.3 Hz, 1H), 3.05 (t, J= 11.0 Hz, 

1H), 2.95 (dt, J= 14.7 Hz, 1H), 2.78 (m, 1H), 2.69 (btw d&t, J= 10.6, 4.8 Hz, 1H), 2.68 (m, 

1H), 1.91 (dd, J= 13.8, 4.3 Hz, 1H). 1H NMR (600 MHz, CDCl 3): Minor yield: δ 7.67–7.63 

(m, 2 H), 7.54-7.52 (m, 2H), 7.46-7.43 (m, 2H), 7.28-7.20 (m, 2H), 7-08-7.01 (m, 2H), 6.83 

(d, J= 9.0 Hz, 2H), 6.82-6.78 (m, 2H), 4.06 (dd, J = 7.2, 4.2 Hz, 1 H), 3.78 (s, 3 H), 3.53 

(dd, J = 6.6, 6.0 Hz, 2 H),3.42 (dd, J = 6.6, 6.0 Hz, 1 H), 3.09 (dd, J = 9.0, 4.2 Hz, 1 H), 

2.78-2.73 (m, 2 H), 2.71-2.69 (m, 2 H), 2.67–2.63 (m, 2 H), 1.91 (dd, J=11.4, 2.4 HZ, 1H), 

0.88–0.82 (m, 3 H). 13C NMR (150 MHz, CDCL3): δ 158.053, 147.646, 142.104, 131.537, 

129.550, 128.737, 128.077, 127.219, 127.101, 126.647, 124.858, 113.92, 81.287, 

69.264, 64.701, 61.974, 55.226, 48.787, 42.451, 36.038. (60a (D-620), and b (D-621)); 

Mp = 195 °C. Anal. (C26H30NO3. HCl) C, H, N and Mp = 200 °C. Anal. (C26H30NO3. HCl) 

C, H, N respectively.  

Procedure Z”. 2,2-Diphenyl-7-oxa-bicyclo[4.1.0]heptane (61).  

The alkene (0.20 g, 0.85 mmol) (53) was dissolved in a mixture of acetonitrile:DME 

(1:2) (15 mL), A buffer Na2B4O7.H2O (0.01 g, 0.05 mmol) in 0.0004 M aqueous Na2EDTA 

(?) was added. Tertbutyl ammonium hydrogen sulfate (0.0114 g, 0.034 mmol), and 

epoxane (ketone) (0.065 g, 0.25 mmol) were then added with stirring. The mixture was 

cooled to about -10 oC bath temperature by using an NaCl ice bath. A solution of oxone 
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in aqueous Na2EDTA 0.004 M and a solution of K2CO3 (0.68 g, 4.91 mmol) in water were 

added dropwise separately over a period of 2 h via droplets to give the chiral epoxide (61) 

(0.074 g, 35%). 1H NMR (600 MHz, CDCl3): δ 7.31-6.92 (m, 10H), 3.85 (d, J= 13.6 Hz, 

1H), 3.25 (dd, J= 13.6, 1.5 Hz, 1H), 2.95 (bt, J= 4.9 Hz, 1H), 2.42 (dd, J= 15.8, 5.8 Hz, 

1H), 2.25 (dd, J= 4.3, 1.5 Hz, 1H), 2.20 (dd, J= 15.8, 0.66 Hz, 1H). 

2-[2-(4-Methoxy-phenyl)-ethylamino]-5,5-diphenyl-cyclohexanol (60a). 

A mixture of chiral epoxide (61) (0.1 g, 0.396 mmol) and 2-(4-methoxyphenyl) 

ethan-1-amine (1.19 g, 7.92 mmol) in ethanol was refluxed at 100 oC under N2 overnight. 

The reaction was followed according to procedure Z’. The crude product was purified via 

silica gel column chromatography using MeOH:DCM (1:10) to get compounds 60a (D-

620) (0.096 g, 64%). 1H NMR (600 MHz, CDCl 3 ): δ 7.45 (d, J= 7.2 Hz, 2H), 7.33 (t, J= 

7.5Hz, 2H), 7.28 (d, J= 7.8 Hz, 2H), 7.23 (t, J= 7.8 Hz, 1H), 7.22 (t, J= 7.8 Hz,2H), 7.14 

(t, J= 7.5 Hz, 1H), 7.07( d, J=8.4 Hz, 2H), 6.8 (d, J= 8.4 Hz, 2H), 4.07 (dd, J= 11.50, 4.8 

Hz, 1H), 3.77 (s, 3H), 3.50 (td, J= 11.60, 4.1 Hz, 1H), 3.09 (dd, J= 11.60, 4.3 Hz, 1H), 

3.05 (t, J= 11.0 Hz, 1H), 2.95 (dt, J= 14.7 Hz, 1H), 2.78 (m, 1H), 2.69 (btw d&t, J= 10.6, 

4.8 Hz, 1H), 2.68 (m, 1H), 1.91 (dd, J= 13.8, 4.3 Hz, 1H). 13C NMR (150 MHz, CDCL3): δ 

158.053, 147.646, 142.104, 131.537, 129.550, 128.737, 128.077, 127.219, 127.101, 

126.647, 124.858, 113.92, 81.287, 69.264, 64.701, 61.974, 55.226, 48.787, 42.451, 

36.038. Mp = 195 °C. Anal. (C26H30NO3. HCl) C, H, N. 

5.2. Evaluation of binding affinity and functional potencies at dopamine D2 and 

D3 receptors.  

Binding affinity was evaluated by inhibition of [3H] spiroperidol (15.0 Ci/mmol, 

Perkin-Elmer) binding to DA rD2 and rD3 receptors expressed in HEK-293 cells in a buffer 
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containing 0.9% NaCl to determine the inhibition constants (Ki) of the synthesized 

compounds (Zhen et al. 2010; Ghosh et al. 2010b). The Cheng–Prusoff equation was 

used to convert the observed IC50 into inhibition constants (Ki) (Zhen et al. 2010). 

Functional activity of test compounds in activating dopamine hD2 and hD3 receptors 

expressed in CHO cells was measured by stimulation of [35S] GTPγS (1250 Ci/mmol, 

Perkin-Elmer) binding in comparison to stimulation by ymthe full agonist DA.  All these 

procedures were described by us previously (Biswas et al. 2008; Zhen et al. 2010; Ghosh 

et al. 2010b). 

5.3. Animal Experiments: (In vivo study of D-636, D-653 and D-656 in 

Parkinsonian rats). 

5.3.1. Drugs and chemicals.  

The following commercially available drug was used in the experiment: reserpine 

hydrochloride (Alfa Aesar). The TFA salt of (-)-11b (D-636) and HBr salts of (-)-15a (D-

653) and (-)-15c (D-656) were dissolved in water. Reserpine was dissolved in 20 μL of 

glacial acetic acid and further diluted with 5.5% glucose solution. The compounds for this 

study were administered in a volume of 0.1−0.2 mL for subcutaneous administration and 

0.5-0.7 ml for interaperitoneal adminstration into each rat.  

5.3.2. Animals. 

In rodent studies, animals were male and female Sprague-Dawley rats from Harlan 

(Indianapolis, IN) weighing 220-225 g unless otherwise specified. Animals were 

maintained in sawdust-lined cages in a temperature and humidity-controlled environment 

at 22 ± 1 °C and 60 ± 5% humidity, respectively. A 12 h light/dark cycle was maintained, 

with lights on from 6:00 a.m. to 6:00 p.m. They were group-housed with unrestricted 
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access to food and water. All experiments were performed during the light component. 

All animal use procedures were in compliance with the Wayne State University Animal 

Investigation Committee, consistent with AALAC guidelines. 

5.3.3. Reversal of reserpine-induced hypolocomotion in rats.  

The ability of compounds D-636, D-653 and D-656 to reverse reserpine-induced 

hypolocomotion was investigated according to a reported procedure (McCall et al. 2005). 

Reserpine (5.0 mg/kg, sc) was administered 18 h before the injection of drug or vehicle. 

The rats were placed individually in the chambers for 1 h for acclimatization before 

administration of the test drugs or vehicle. Immediately after administration of drug or 

vehicle, animals were individually placed in Opto-Varimex 4 animal activity monitor 

chamber (Columbus Instruments, Ohio, USA) to start measuring locomotor activity. 

Locomotion was monitored for 6 h. Consecutive interruption of two infrared beams, 

situated 50 cm apart and 4 cm above the cage floor, in the monitor chamber recorded 

movement. The data were presented as horizontal activity (HACTV). The effect of 

individual doses of drugs on locomotor activity was compared with respect to saline 

treated controls (mean ± SEM). The data were analyzed by one-way analysis of variance 

(ANOVA) followed by Dunnett’s post hoc test. The effect was considered significant if the 

difference from control group was observed at p < 0.05. 

5.4. In vitro study of D-636, D-653 and D-656 using PC12 cells. 

5.4.1. Cell Cultures and Treatments.  

PC12 cells (ATCC CRL1721.1, Manassas, VA, USA), a rat adrenal 

pheochromocytoma cell line, were cultured in T-75 flasks (Greiner Bio One, 

Frickenhausen, Germany) and maintained in RPMI 1640 medium supplemented with 
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10% heat inactivated horse sérum, 5% fetal bovine sérum, 100 U/ ml penicillin, and 100 

µg/mL streptomycin at 37 oC in 95% air/5% CO2. Stock solutions of D-636, D-653, and D-

656 were prepared in dimethylsulfoxide (DMSO) and stored at -20 oC, a stock solution of 

6-Hydroxydopamine (6-OHDA) was stored at -80 oC, a solution of 6-carboxy-2',7'-

dichlorodihydroflourescence diacetate (carboxy-DCFDA) was prepared fresh in DMSO 

before addition. All stock solution were stored for the period of the experiments. 

5.4.2. Antioxidant activity studies: Measurement of antioxidant activity:  

To determine the effects of D-636, D-653 and D-656 in decreasing reactive oxygen 

species (ROS) in PC12 cells produced by the neurotoxin 6-OHDA, a quantitative 

fluorometric ROS assay was performed. PC12 cells were plated at 30,000 cells/well 

density in 100 µL media in 96-well black plates and incubated at 37 oC under 5% CO2 

atmosphere for 24 h. The cells were treated for 24 h with various concentrations of 

compounds D-636, D-653 and D-656. Then the drugs containing media were removed 

and replaced with DCFDA 20 µm for 30 min in an incubator (37 oC, 5% CO2). The DCFDA 

containing media was then removed and the cells were washed with PBS buffer to remove 

the traces of the dye. Fresh culture media was added followed by treatment with 75 µM 

of 6-OHDA alone for an additional 1 h under the same conditions. After incubation for 1 

h, the fluorescence was measured using spectrophotometer fluorescence generated 

microplate reader (Biotek Epoch, Winooski, VT, USA) at excitation 497 nm and emission 

at 527nm. Data from at least three experiments were analyzed by one-way analysis of 

variance (ANOVA) followed by Tukey’s multiple comparison post hoc test using 

GraphPad software (version 6, San Diego, CA, USA). The specific fluorescence emission 

was calculated after subtraction of the DCFDA untreated control cells from the DCFDA 



www.manaraa.com

 

 

130 

treated cells for both the background and 1h treatment conditions. This was followed by 

the division of the 1h treatment data by the background activity which was determined 

from vials before treatment with 6-OHDA, to derive the final data point.  

5.4.3. Neuroprotection Studies. 

5.4.3.1. Assessment of Cell Viability:      

PC12 cells (ATCC CRL1721.1, Manassas, VA, USA), a rat adrenal 

pheochromocytoma cell line, were cultured in T-75 flasks (Greiner Bio One, 

Frickenhausen, Germany) and maintained in RPMI 1640 medium supplemented with 

10% heat inactivated horse sérum, 5% fetal bovine sérum, 100 U/ml penicillin, and 100 

µg/mL streptomycin at 37 oC in 95% air/5% CO2. Stock solutions of D-636, D-653, D-656, 

and 6-hydroxydopamine (6-OHDA) were prepared in dimethylsulfoxide (DMSO) and 

aliquots were stored at -20 oC and -80 oC, respectively. For all experiments assessing 

neuroprotective effects of the test compounds, PC12 cells were pretreated with indicated 

concentrations of D-636, D-653 and D-656 for 24 h and then treated with 75 µM 6-OHDA 

for another 24 h. The control cells were treated with above media containing 0.01% 

DMSO only. 

To determine the neuroprotective effects of D-636, D-653 and D-656 in the 

presence of neurotoxin 6-OHDA, a quantitative colorimetric MTT assay was performed. 

PC12 cells were plated at 17000 cells/well density in 100 µL of media in 96-well plates 

and incubated at 37 oC under 5% CO2 atmosphere for 24 h. Cells were treated with 

varying concentrations of the test compounds to determine their direct effect on cell 

viability. Neuroprotection experiments were conducted by treating cells for 24 h with 

varying concentrations of D-636, D-653 and D-656. Then the drug containing media was 
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replaced with fresh culture media followed by treatment with 75 µM of 6-OHDA alone for 

an additional 24 h under the same condition. After incubation for 24 h, 5 mg/mL MTT 

solution (prepared in Dulbecco’s phosphate-buffered saline) was added to the cells (to a 

final concentration of 0.5 mg/mL) and the plates were further incubated at 37 oC in 95% 

air/5% CO2 atmosphere for 3-4 h to produce dark-blue formazan crystals. Afterward, the 

plates were centrifuged at 450 g for 10 min and the supernatants were carefully removed. 

Formazan crystals were dissolved by adding 100 µL of methanol:DMSO (1:1) mixture to 

each well and shaking gently at 400 rpm for 30 min at room temperature on a Thermomix 

R shaker (Eppendorf, Hamburg, Germany). The absorbance was measured on a 

microplate reader (Biotek Epoch, Winooski, VT, USA) at 570 nm with background 

correction performed at 690 nm. Data from at least three experiments were analyzed 

using GraphPad software (version 6, San Diego, CA, USA). Cell viability was defined as 

percentage reduction in absorbance compared to untreated controls. The data were 

analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s multiple 

comparison post hoc test. 

5.5. Human monoamine oxidase inhibition (hMAO) studies. 

This study was done to determine the ability of selected compounds in inhibiting 

MAO enzymes. A fluorometric screening was carried out according to the protocols with 

some modifications (Zhengyin et al. 2004; Novaroli et al. 2005; Chimenti et al. 2013). The 

enzyme activity was determined by measuring the fluorescence generated from the 

oxidation of kynuramine to 4-hydroxyquinoline (4-HQ) catalyzed by monoamine oxidase 

enzyme. In this experiment the MAO enzyme source was used containing recombinant 

hMAO-A and hMAO-B microsomes from insect cells as commercially available in Sigma-
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Aldrich. They were stored at −80 °C as pre-aliquoted to avoid repeated freeze-thaw 

cycles. During experiment preparation, they were liquefied rapidly in a 37 °C water bath 

and kept on ice until use. In this study, the substrate for both MAO-A and MAO-B was 

kynuramine, and buffer assay was potassium phosphate (0.1 M, pH 7.4, made isotonic 

with KCl 20.2 mM). The final volume of the 146 reactions was set to 200 µL. The reference 

compound for this assay was a pargyline, a known potent MAO-B inhibitor. 

5.5.1. Initial hMAO-B inhibition screening 

Selected compounds were first examined at a dose of 25 µM for their inhibitory 

activity against hMAO-B. The final concentration of enzyme and substrate were set at 15 

µg/mL and 25 µM, respectively. Stocks of compounds (50 µM) were prepared in DMSO, 

whose percentage was kept at 0.05% in the final assay reaction mixture. Substrate (50 

µL/well) and compound solutions (100 µL/well) were added into a black 96-well plate and 

pre-incubated at 37 °C for 10 min. The control wells received assay buffer instead of 

compound solutions. The enzymatic reaction was initiated by the addition of hMAO-B 

solution (50 µL/well). The reaction mixture was then incubated at 37 °C for 20 min, and 

subsequently 2N NaOH aqueous solution (75 µL/well) was added to terminate the 

reaction. The fluorescence of 4-HQ was measured in triplicates using the Synergy Hybrid 

H1 fluorescence microplate reader (BioTek) at the wavelength pair of 310/400 nm 

(excitation/emission), and the readings were averaged and normalized with respect to the 

control. Assays were carried out in three independent experiments.  

5.5.2. IC 50 values determination 

Compounds, which reduced the hMAO-B activity to near half in the initial screening 

at 25 µM were considered hit molecules and were tested further for the IC 50 values for 
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both hMAO-A and hMAO-B to determine their selectivity ratio. Seven doses of test 

compounds (0-250 µM) were used, and the final concentration of the enzyme was set to 

15 µg/mL. The final concentrations of substrate for measuring either hMAO-A or hMAO-

B activity were set to 40 µM and 25 µM, respectively. The fluorescence was measured in 

either duplicates or triplicates, and the IC 50 values were determined from non-linear 

regression of dose-response curves using GraphPad Prism 6.0 (GraphPad Software, San 

Diego, CA, USA). Assays were carried out in three independent experiments. 

Monoamine reuptake inhibitors studies. 

5.5.3. Inhibition of monoamine uptake by cloned human biogenic amine 

transporters in heterologous cells. 

Inhibition of substrate uptake by cloned human transporters was measured with 

stably transfected human embryonic kidney (HEK) 293 cells as in our previous work (E A 

Reith et al. 2012). The cell lines were obtained and used in uptake assays as described 

in the same paper (E A Reith et al. 2012). [3H]DA ([ring 2,5,6- 3 H]dopamine (45.0 

Ci/mmol, PerkinElmer, Boston, MA, U.S.A) was used for monitoring DAT and NET, DA 

was used as a reference because of its excellent substrate for NET (Santra, Gogoi, 

Gopishetty, Antonio, Zhen, E A Reith, et al. 2012), [3H]5-HT ([1,2- 3H] serotonin (27.9 

Ci/mmol, Perkin-Elmer) was the radioligand for monitoring SERT. 

Drug stocks contained an additional 0.01% (w/v) bovine serum albumin in order to 

reduce absorption of drug to the walls of the assay plates. At least five triplicate 

concentrations of each test compound were studied, spaced evenly around the IC50 value 

which was converted to Ki with the Cheng-Prusoff equation (Soumava et al. 2012). 

5.6. Statistical analysis 
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Statistical analyses were performed using GraphPad Prism 6.0 (GraphPad 

Software, San Diego, CA, USA). For all the in vitro assays, the data were analyzed by 

one-way analysis of variance (ANOVA) analysis followed by Tukey’s multiple comparison 

post hoc test unless otherwise specified. And for the in vivo assays, one-way ANOVA 

analysis followed by Dunnett’s analysis was used. The effect was considered significant 

if the difference from control group was observed at p < 0.05. 
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CHAPTER 6 

 CONCLUSION 

Parkinson's disease (PD) is a progressive age-related neurodegenerative disorder 

that is characterized by the loss of dopamine and the degeneration of the DA neurons in 

the SNpc of the central nervous system (CNS). The pathogenesis of PD has been 

identified as multifactorial in nature. Therefore, drugs that target a single biological target, 

have been found to be insufficient to treat PD (Nagal and Singla 2012). Therefore, it is 

hypothesized that designing and development of multifunctional molecules having 

multiple pharmacological properties targeting multiple pathogenic pathways associated 

with the progression and development of PD should be beneficial as disease-modifying 

agent for the treatment of PD. 

The first main objective represents the development of a novel series of 

multifunctional dopamine D2/D3 agonists based on carbazole derivatives that can 

potentially protect the neurons from degeneration in PD. The dopamine D2/D3 receptor 

agonists pharmacophore were attached to the various carbazole moieties via va linkers 

to build various hybrid molecules. A series of compounds were synthesized, and 

characterized in vitro assays which was followed by in vivo assay for selected lead 

molecules.. Compounds (-)-11b, (-)-15a and (-)-15c exhibited high affinity and full agonist 

activity at both D2 and D3 receptors. In PD animal model, the lead molecules exhibited 

potent activity and high efficay in augmenting the locomotor activity with a long duration 

of action by reversing hypolocomotion in reserpinized rats, which indicated their potential 

as anti-PD drugs. To glean insight into their possible multifunctional property, the data 

presented here also shows that both (-)-11b and (-)-15c are neuroprotective in an in vitro 
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model of dopaminergic PC12 cells treated with the neurotoxin 6-OHDA to demonstrate a 

significant dose-dependent reduction of toxicity induced by treatment with the neurotoxin 

6-hydroxydopamine. Therefore, supports the notion that multifunctional drugs like (-)-11b 

and (-)-15c have the potential not only to ameliorate motor dysfunction in PD patients but 

also to modify disease progression by protecting DA neurons from neurotoxic insults in 

addition to restoring their function. This study will, therefore, shed additional light on the 

importance of carbazole moiety (Głuszyńska 2015) as a potential molecular component 

in hybrid drug design approach for developing disease-modifying therapeutics for PD. 

Further mechanistic studies to ascertain the disease-modifying effects of the compounds 

are currently underway and will be published in due course. 

The second objective was to design and synthesize a series of novel dopamine 

D2/D3 receptor agonists that should selectively inhibit MAO-B activity also. Such 

molecules were designed by combining the D2/D3 receptor agonist fragments with the 

propargyl group. The designed compounds were evaluated for the binding activity for 

D2/D3 receptors first. In this SAR study, a noticeable reduction in the D2 binding affinity of 

the compound (-)-35-(D-677) was observed when the compound underwent methylation 

of the secondary nitrogen atom directly attached to the propargyl group. A reduction in 

the D3 binding affinity was also observed. Conversely, the O-analog version (±)-42 D-

678), exhibited similar D2 binding affinity when compared to (-)-33 D-671 The similarity of 

the binding affinity for D-(-)-33 D-671, and (±)-42 D-678 might be explained by the 

presence of the lone pair of electrons on the secondary amine and the oxygen atom that 

would be necessary for the binding of these compound to the D2/D3 receptors possibly 

via H-bonding interaction. In the case of functional activities, both (-)-33 D-671 and (±)-
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42 D-678 produce full agonist activity. It was interesting that the compound (±)-42 D-678 

remained full agonist at D2 receptor even after the substitution of the nitrogen atom and 

also exerted a slight improvement in the potency at the D3 receptor. Compounds were 

further tested in the in vitro enzymatic assays and compound (-)-33 D-671 was shown to 

be more active than (±)-42 D-678, demonstrating potent inhibition of the MAO-B.  

The determination of IC50 values suggested that both compounds (-)-33 D-671 and 

(±)-42 D-678 are slightly more selective for MAO-B than MAO-A. Further structural 

modification and characterization studies are required to improve the selectivity of the 

current lead compound to inhibit the MAO-B.  

Our final goal was to develop novel multifunctional triple reuptake inhibitors (TUIs) 

to treat the motor, and the non-motor symptoms like depression associated with PD. Our 

drug development study was based on the modification of the pyran template using 

different substituted groups. To develop suitable TUIs and to further understand the effect 

of the structural modifications on the activity profile for the three monoamine transporters, 

we further expanded our previous SAR studies with 2,3,5-trisubstituted pyran 

compounds. Compound D-594 was synthesized by introducing biphenyl groups directly 

to the pyran moiety to evaluate their effect on the profile of the uptake inhibition activity. 

Compound D-594 exhibited moderate potency at DAT and weak potency at both SERT 

and NET. To follow up on the SAR studies to improve the binding activity of this 

compound, further modifications have been made by substituting the methylene bridge 

with the ethylene bridge to develop compounds D-620, and D-621 which were subjected 

to in vitro inhibition assays. Compound D-621 exhibited low potency at both DAT and 

NET transporters with moderate potency at SERT transporter while compound D-620 
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exhibited balanced potency at both DAT and NET transporters with moderate potency at 

SERT transporter. Introduction of methylene atom to build the ethylene bridge in general 

showed increasing the activity for the SERT. Compound D-620, was identified as the lead 

compound from this SAR study and it exhibited dual reuptake inhibitor activity (DNRI-

type) profile. This outcome suggests further study and structural modifications are 

necessary to develop TUIs with potent activity at three monoamine transporters.  
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Parkinson’s disease (PD) is a progressive neurodegenerative disease that 

develops from gradual depletion of dopamine (DA) and dopaminergic neurons in the 

substantia nigra pars compacta (SNc) with the accumulation of intraneuronal 

proteinaceous matter named as Lewy bodies. The four cardinal symptoms associated 

with PD are tremor, rigidity, bradykinesia, and postural instability.  Although the exact 

mechanism and etiology of PD are not fully understood, several factors have been 

implicated in the pathogenesis and progression of PD including protein aggregation, 

oxidative stress, mitochondrial dysfunction, environmental, and genetic factors.  

The current therapy of Parkinson’s disease is categorized into four classes: levodopa, 

DA agonists, monoamine oxidase inhibitors (MAO-Is), catechol-o-methyl transferase 

inhibitors (COMT-Is) and Dopamine agonist (DA). Even though these medications are 

available to treat PD, they only reduce the symptoms and do not slow or stop the disease 

progression; in addition to developing the severe side effects such as dyskinesia and 

motor fluctuation with long-term therapy. To overcome the concerns associated with 
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current PD medications, a new strategy has been adopted by developing multifunctional 

molecules to target multiple factors implicated in the pathogenesis of the disease that 

could be beneficial to treat the patients. 

The hypothesis of this dissertation is to develop novel multifunctional dopamine 

D2/D3 agonist molecules with neuroprotective, antioxidants properties to modulate the 

pathogenic pathway while addressing the symptomatic deficits. Specifically, our hybrid 

structure strategy which combines D2/D3 agonist head groups to the other moieties that 

are suitable to modulate the pathogenic pathway of PD, led to development of molecules 

to validate our proof of concept. 

In this project, the structure activity relationship (SAR) study was carried out based 

on our hybrid structure strategy template that was previously established. Three main 

objectives were set forward in this project: the first is to design and develop multifunctional 

molecules by covalently attaching D2/D3 agonist head groups such as pramipexole and 

5-OH-DPAT to various carbazole moieties through a piperazine linker. The lead molecules 

(-)-11b, (-)-15a and (-)-15c exhibited high affinity for both D2 and D3 receptors whereas 

in GTPγS functional assay, the compounds showed potent agonist activity at both D2 and 

D3 receptors (EC50 (GTPγS); D2 = 48.7 nM, D3 = 0.96 nM for 11b, D2 = 0.87 nM, D3 = 

0.23 nM for 15a and D2 = 2.29 nM, D3 = 0.22 nM for 15c). In PD animal model study, the 

test compounds exhibited potent in vivo activity by reversing hypolocomotion in 

reserpinized rats with a long duration of action compared to the reference drug. In a 

cellular antioxidant assay, compounds (-)-11b, (-)-15a and (-)-15c exhibited potent activity 

in reducing oxidative stress induced by neurotoxin 6-hydroxydopamine (6-OHDA). Also, 

in a cell-based PD neuroprotection model, these lead compounds significantly increased 
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cell survival from toxicity of 6-OHDA, thereby, producing neuroprotection effect. These 

observations suggest that the lead carbazole-based dopamine agonists are promising 

multifunctional molecules for a viable symptomatic and disease modifying therapy of PD 

and should be further investigated.  The second objective is to combine D2/D3 agonist 

head groups with monoamine oxidase inhibiton property. Based on the results from in 

vitro receptor assays and enzymatic inhibition assay of the generated compounds led to 

the identification of compounds (−)-33 (D-671) and (±)-42 (D-678) as the lead compounds 

that demand further modification. The third main objective is to develop novel 

multifunctional triple reuptake inhibitor based on the modification of the pyran template 

that was previously established by us to treat the motor, non-motor symptoms like 

depression associated with PD. The designed compounds were evaluated for their 

binding affinities for the DAT, SERT, NET in the brain tissue. Based on the results of the 

affinity data of the initial compounds for the DAT, SERT, NET, cis-isomer compound 60a 

(D-620) exhibited high affinity for both DAT and NET that could be considered as a dual 

inhibitor for the monoamine reuptake transporters. According to this finding 60a (D-621) 

was identified as the lead compound that requires further modification. 
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